1
0
mirror of https://github.com/astaxie/beego.git synced 2024-11-27 01:31:29 +00:00
Beego/vendor/golang.org/x/crypto/pbkdf2/pbkdf2.go

78 lines
2.4 KiB
Go
Raw Normal View History

2018-07-30 04:05:51 +00:00
// Copyright 2012 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
/*
Package pbkdf2 implements the key derivation function PBKDF2 as defined in RFC
2898 / PKCS #5 v2.0.
A key derivation function is useful when encrypting data based on a password
or any other not-fully-random data. It uses a pseudorandom function to derive
a secure encryption key based on the password.
While v2.0 of the standard defines only one pseudorandom function to use,
HMAC-SHA1, the drafted v2.1 specification allows use of all five FIPS Approved
Hash Functions SHA-1, SHA-224, SHA-256, SHA-384 and SHA-512 for HMAC. To
choose, you can pass the `New` functions from the different SHA packages to
pbkdf2.Key.
*/
package pbkdf2 // import "golang.org/x/crypto/pbkdf2"
import (
"crypto/hmac"
"hash"
)
// Key derives a key from the password, salt and iteration count, returning a
// []byte of length keylen that can be used as cryptographic key. The key is
// derived based on the method described as PBKDF2 with the HMAC variant using
// the supplied hash function.
//
// For example, to use a HMAC-SHA-1 based PBKDF2 key derivation function, you
// can get a derived key for e.g. AES-256 (which needs a 32-byte key) by
// doing:
//
// dk := pbkdf2.Key([]byte("some password"), salt, 4096, 32, sha1.New)
//
// Remember to get a good random salt. At least 8 bytes is recommended by the
// RFC.
//
// Using a higher iteration count will increase the cost of an exhaustive
// search but will also make derivation proportionally slower.
func Key(password, salt []byte, iter, keyLen int, h func() hash.Hash) []byte {
prf := hmac.New(h, password)
hashLen := prf.Size()
numBlocks := (keyLen + hashLen - 1) / hashLen
var buf [4]byte
dk := make([]byte, 0, numBlocks*hashLen)
U := make([]byte, hashLen)
for block := 1; block <= numBlocks; block++ {
// N.B.: || means concatenation, ^ means XOR
// for each block T_i = U_1 ^ U_2 ^ ... ^ U_iter
// U_1 = PRF(password, salt || uint(i))
prf.Reset()
prf.Write(salt)
buf[0] = byte(block >> 24)
buf[1] = byte(block >> 16)
buf[2] = byte(block >> 8)
buf[3] = byte(block)
prf.Write(buf[:4])
dk = prf.Sum(dk)
T := dk[len(dk)-hashLen:]
copy(U, T)
// U_n = PRF(password, U_(n-1))
for n := 2; n <= iter; n++ {
prf.Reset()
prf.Write(U)
U = U[:0]
U = prf.Sum(U)
for x := range U {
T[x] ^= U[x]
}
}
}
return dk[:keyLen]
}