2021-02-25 07:55:29 +01:00

511 lines
16 KiB
C

/*
* modified/reduced to provide HCP Modbus low level functions
*
* The MIT License (MIT)
*
* Copyright (c) 2016 Juho Vähä-Herttua (juhovh@iki.fi)
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#include "hciemulator.h"
#include "crc.h"
#include "osapi.h"
#include "ets_sys.h"
#include "uart_register.h"
#define T3_5 4800 //1750
#define DEVICEID 0x02
#define BROADCASTID 0x00
#define SIMULATEKEYPRESSDELAYMS 100
#define CHECKCHANGEDSET(Target,Value,Flag) if((Target)!=(Value)){Target=Value;Flag=true;}
#define UART0 0
// Missing defines from SDK
#define FUNC_U0RXD 0
// Define FIFO sizes, actually 128 but playing safe
#define UART_RXFIFO_SIZE 126
#define UART_TXFIFO_SIZE 126
#define UART_RXTOUT_TH 2
#define UART_RXFIFO_TH 100
#define UART_TXFIFO_TH 10
// Define some helper macros to handle FIFO functions
#define UART_TXFIFO_LEN(uart_no) \
((READ_PERI_REG(UART_STATUS(uart_no)) >> UART_TXFIFO_CNT_S) & UART_RXFIFO_CNT)
#define UART_TXFIFO_PUT(uart_no, byte) \
WRITE_PERI_REG(UART_FIFO(uart_no), (byte) & 0xff)
#define UART_RXFIFO_LEN(uart_no) \
((READ_PERI_REG(UART_STATUS(uart_no)) >> UART_RXFIFO_CNT_S) & UART_RXFIFO_CNT)
#define UART_RXFIFO_GET(uart_no) \
READ_PERI_REG(UART_FIFO(uart_no))
bool skipFrame = false;
int recvTime = 0;
int lastSendTime = 0;
int lastStateTime = 0;
size_t rxlen = 0;
size_t txlen = 0;
size_t txpos = 0;
unsigned char rxbuffer[255];
unsigned char txbuffer[255];
EStateMachine statemachine = WAITING;
SHCIState state;
//--------------------------------------------------------------
void openDoor(){
if(statemachine != WAITING){
return;
}
lastStateTime = millis();
statemachine = STARTOPENDOOR;
}
void openDoorHalf(){
if(statemachine != WAITING){
return;
}
lastStateTime = millis();
statemachine = STARTOPENDOORHALF;
}
void closeDoor(){
if(statemachine != WAITING){
return;
}
lastStateTime = millis();
statemachine = STARTCLOSEDOOR;
}
void stopDoor(){
if(statemachine != WAITING){
return;
}
lastStateTime = millis();
statemachine = STARTSTOPDOOR;
}
void toggleLamp(){
if(statemachine != WAITING){
return;
}
lastStateTime = millis();
statemachine = STARTTOGGLELAMP;
}
void ventilationPosition(){
if(statemachine != WAITING){
return;
}
lastStateTime = millis();
statemachine = STARTVENTPOSITION;
}
unsigned long getMessageAge(){
return micros()-recvTime;
}
SHCIState* getHCIState(){
return &state;
}
//--------------------------------------------------------------
const unsigned char ResponseTemplate_Fcn17_Cmd03_L08 []= {0x02,0x17,0x10,0x3E,0x00,0x03,0x01,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x74,0x1B};
const unsigned char ResponseTemplate_Fcn17_Cmd04_L02 []= {0x02,0x17,0x04,0x0F,0x00,0x04,0xFD,0x0A,0x72};
static void processDeviceStatusFrame(){
if(rxlen==0x11){
unsigned char counter = rxbuffer[11];
unsigned char cmd = rxbuffer[12];
if(rxbuffer[5] == 0x08){
// expose internal state
// 00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16
//0011: 02 17 9C B9 00 08 9C 41 00 02 04 3E 03 00 00 EB CC
//res=> 02 17 10 3E 00 03 01 00 00 00 00 00 00 00 00 00 00 00 00 74 1B
memcpy_P(txbuffer, ResponseTemplate_Fcn17_Cmd03_L08, sizeof(ResponseTemplate_Fcn17_Cmd03_L08));
txbuffer[0] = rxbuffer[0];
txbuffer[3] = counter;
txbuffer[5] = cmd;
txlen = sizeof(ResponseTemplate_Fcn17_Cmd03_L08);
switch(statemachine)
{
// open Door
case STARTOPENDOOR:
txbuffer[7]= 0x02;
txbuffer[8]= 0x10;
statemachine = STARTOPENDOOR_RELEASE;
lastStateTime = millis();
break;
case STARTOPENDOOR_RELEASE:
if(lastStateTime+SIMULATEKEYPRESSDELAYMS<millis()){
txbuffer[7]= 0x01;
txbuffer[8]= 0x10;
statemachine = WAITING;
}
break;
// close Door
case STARTCLOSEDOOR:
txbuffer[7]= 0x02;
txbuffer[8]= 0x20;
statemachine = STARTCLOSEDOOR_RELEASE;
lastStateTime = millis();
break;
case STARTCLOSEDOOR_RELEASE:
if(lastStateTime+SIMULATEKEYPRESSDELAYMS<millis()){
txbuffer[7]= 0x01;
txbuffer[8]= 0x20;
statemachine = WAITING;
}
break;
// stop Door
case STARTSTOPDOOR:
txbuffer[7]= 0x02;
txbuffer[8]= 0x40;
statemachine = STARTSTOPDOOR_RELEASE;
lastStateTime = millis();
break;
case STARTSTOPDOOR_RELEASE:
if(lastStateTime+SIMULATEKEYPRESSDELAYMS<millis()){
txbuffer[7]= 0x01;
txbuffer[8]= 0x40;
statemachine = WAITING;
}
break;
// Ventilation
case STARTVENTPOSITION:
txbuffer[7]= 0x02;
txbuffer[9]= 0x40;
statemachine = STARTVENTPOSITION_RELEASE;
lastStateTime = millis();
break;
case STARTVENTPOSITION_RELEASE:
if(lastStateTime+SIMULATEKEYPRESSDELAYMS<millis()){
txbuffer[7]= 0x01;
txbuffer[9]= 0x40;
statemachine = WAITING;
}
break;
// Half Position
case STARTOPENDOORHALF:
txbuffer[7]= 0x02;
txbuffer[9]= 0x04;
statemachine = STARTOPENDOORHALF_RELEASE;
lastStateTime = millis();
break;
case STARTOPENDOORHALF_RELEASE:
if(lastStateTime+SIMULATEKEYPRESSDELAYMS<millis()){
txbuffer[7]= 0x01;
txbuffer[9]= 0x04;
statemachine = WAITING;
}
break;
// Toggle Lamp
case STARTTOGGLELAMP:
txbuffer[7]= 0x10;
txbuffer[9]= 0x02;
statemachine = STARTTOGGLELAMP_RELEASE;
lastStateTime = millis();
break;
case STARTTOGGLELAMP_RELEASE:
if(lastStateTime+SIMULATEKEYPRESSDELAYMS<millis()){
txbuffer[7]= 0x08;
txbuffer[9]= 0x02;
statemachine = WAITING;
}
break;
case WAITING:
break;
}
return;
}
else if(rxbuffer[5] == 0x02){
// 00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16
//0011: 02 17 9C B9 00 02 9C 41 00 02 04 0F 04 17 00 7B 21
//res=> 02 17 04 0F 00 04 FD 0A 72
memcpy_P(txbuffer, ResponseTemplate_Fcn17_Cmd04_L02, sizeof(ResponseTemplate_Fcn17_Cmd04_L02));
txbuffer[0] = rxbuffer[0];
txbuffer[3] = counter;
txbuffer[5] = cmd;
txlen = sizeof(ResponseTemplate_Fcn17_Cmd04_L02);
return;
}
}
//Log3(LL_ERROR,"Frame skipped, unexpected data: ", m_rxbuffer, m_rxlen);
}
const unsigned char ResponseTemplate_Fcn17_Cmd02_L05 []= {0x02,0x17,0x0a,0x00,0x00,0x02,0x05,0x04,0x30,0x10,0xff,0xa8,0x45,0x0e,0xdf};
static void processDeviceBusScanFrame(){
// 00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16
//0013: 02 17 9C B9 00 05 9C 41 00 03 06 00 02 00 00 01 02 f8 35
//res=> 02 17 0a 00 00 02 05 04 30 10 ff a8 45 0e df
unsigned char counter = rxbuffer[11];
unsigned char cmd = rxbuffer[12];
memcpy_P(txbuffer, ResponseTemplate_Fcn17_Cmd02_L05, sizeof(ResponseTemplate_Fcn17_Cmd02_L05));
txbuffer[0] = rxbuffer[0];
txbuffer[3] = counter;
txbuffer[5] = cmd;
txlen = sizeof(ResponseTemplate_Fcn17_Cmd02_L05);
//Log(LL_INFO,"Busscan received");
}
static void processBroadcastStatusFrame(){
//001B: 00 10 9D 31 00 09 12 64 00 00 00 40 60 00 00 00 00 00 00 00 00 00 01 00 00 CA 22
bool hasStateChanged = false;
CHECKCHANGEDSET(state.lampOn,rxbuffer[20] == 0x14,hasStateChanged);
CHECKCHANGEDSET(state.doorCurrentPosition,rxbuffer[10],hasStateChanged);
CHECKCHANGEDSET(state.doorTargetPosition, rxbuffer[9],hasStateChanged);
CHECKCHANGEDSET(state.doorState, rxbuffer[11],hasStateChanged);
CHECKCHANGEDSET(state.reserved, rxbuffer[17],hasStateChanged);
CHECKCHANGEDSET(state.valid, true,hasStateChanged);
}
static bool processFrame(){
switch (rxlen)
{
case 0x1b:
case 0x11:
case 0x13:
break;
default:
// unexpected rxlen
return false;
}
txlen=txpos=0;
// check device id, pass only device id 2 and 0 (broadcast)
if(rxbuffer[0] != BROADCASTID && rxbuffer[0] != DEVICEID){
// Frame skipped, unsupported device id
return false;
}
// check crc
uint16_t crc = readCRC(rxbuffer, rxlen);
if(crc != calculateCRC(rxbuffer,rxlen-MODBUS_CRC_LENGTH)){
// Frame skipped, wrong crc
return false;
}
// dispatch modbus function
switch(rxbuffer[1]){
case 0x10:{ // Write Multiple registers
if(rxlen == 0x1b && rxbuffer[0] == BROADCASTID)
{
processBroadcastStatusFrame();
return true;
}
break;
}
case 0x17:{ // Read/Write Multiple registers
if(rxbuffer[0] == DEVICEID){
switch(rxlen){
case 0x11:{
processDeviceStatusFrame();
return true;
}
case 0x13:
processDeviceBusScanFrame();
return true;
}
}
break;
}
}
// Frame skipped, unexpected data
return false;
}
static void processMessage (){
// check frame, process frame
if(statemachine!= WAITING && lastStateTime+2000<millis()){
statemachine = WAITING;
}
if(!processFrame()){
return;
}
rxlen = 0;
// prepare response fix crc
if(txlen > 0){
uint16_t crc = calculateCRC(txbuffer, txlen - MODBUS_CRC_LENGTH);
txbuffer[txlen - MODBUS_CRC_LENGTH] = crc & 0xFF;
txbuffer[(txlen - MODBUS_CRC_LENGTH) + 1] = crc >> 8;
// Enable send
SET_PERI_REG_MASK(UART_INT_ENA(UART0), UART_TXFIFO_EMPTY_INT_ENA);
}
}
//--------------------------------------------------------------
static uint16
uart0_receive()
{
uint16 i;
uint16 uart0_rxfifo_len = UART_RXFIFO_LEN(UART0);
if(rxlen>0 && (micros()-recvTime > T3_5)){
// last message timeout, reset buffer
rxlen = 0;
skipFrame = false;
}
// receive data from uart
for (i=0; i<uart0_rxfifo_len; i++) {
if (rxlen < sizeof(rxbuffer)) {
rxbuffer[rxlen++] = UART_RXFIFO_GET(UART0);
}else{
// buffer overflow!!!
skipFrame = true;
UART_RXFIFO_GET(UART0);
}
recvTime = micros();
}
if(!skipFrame && rxlen>0){
processMessage();
}
return i;
}
static uint16
uart0_send()
{
uint16 i;
for (i=UART_TXFIFO_LEN(UART0); i<UART_TXFIFO_SIZE; i++) {
if (txpos==txlen) {
txpos=txlen=0;
CLEAR_PERI_REG_MASK(UART_INT_ENA(UART0), UART_TXFIFO_EMPTY_INT_ENA);
break;
}
UART_TXFIFO_PUT(UART0, txbuffer[txpos++]);
lastSendTime = micros()-recvTime;
}
return i-1;
}
static void
uart0_intr_handler(void *arg)
{
uint32 uart0_status;
uart0_status = READ_PERI_REG(UART_INT_ST(UART0));
if (uart0_status & UART_RXFIFO_TOUT_INT_ST) {
// No character received for some time, read to ringbuf
WRITE_PERI_REG(UART_INT_CLR(UART0), UART_RXFIFO_TOUT_INT_ST);
uart0_receive();
} else if (uart0_status & UART_RXFIFO_FULL_INT_ST) {
// RX buffer becoming full,
WRITE_PERI_REG(UART_INT_CLR(UART0), UART_RXFIFO_FULL_INT_ST);
uart0_receive();
} else if (uart0_status & UART_TXFIFO_EMPTY_INT_ST) {
// TX buffer empty, check if ringbuf has space or disable int
WRITE_PERI_REG(UART_INT_CLR(UART0), UART_TXFIFO_EMPTY_INT_ST);
uart0_send();
}
}
void ICACHE_FLASH_ATTR
uart0_open(uint32 baud_rate, uint32 flags)
{
uint32 clkdiv;
ETS_UART_INTR_DISABLE();
// Set both RX and TX pins to correct mode
PIN_FUNC_SELECT(PERIPHS_IO_MUX_U0TXD_U, FUNC_U0TXD);
PIN_FUNC_SELECT(PERIPHS_IO_MUX_U0RXD_U, FUNC_U0RXD);
// Disable pullup on TX pin, enable on RX pin
PIN_PULLUP_DIS(PERIPHS_IO_MUX_U0TXD_U);
PIN_PULLUP_EN(PERIPHS_IO_MUX_U0RXD_U);
// Configure baud rate for the port
clkdiv = (UART_CLK_FREQ / baud_rate) & UART_CLKDIV_CNT;
WRITE_PERI_REG(UART_CLKDIV(UART0), clkdiv);
// Configure parameters for the port
WRITE_PERI_REG(UART_CONF0(UART0), flags);
// Reset UART0
uart0_reset(baud_rate, flags);
}
void ICACHE_FLASH_ATTR
uart0_reset()
{
// Disable interrupts while resetting UART0
ETS_UART_INTR_DISABLE();
// Clear all RX and TX buffers and flags
SET_PERI_REG_MASK(UART_CONF0(UART0), UART_RXFIFO_RST | UART_TXFIFO_RST);
CLEAR_PERI_REG_MASK(UART_CONF0(UART0), UART_RXFIFO_RST | UART_TXFIFO_RST);
// Set RX and TX interrupt thresholds
WRITE_PERI_REG(UART_CONF1(UART0),
UART_RX_TOUT_EN |
((UART_RXTOUT_TH & UART_RX_TOUT_THRHD) << UART_RX_TOUT_THRHD_S) |
((UART_RXFIFO_TH & UART_RXFIFO_FULL_THRHD) << UART_RXFIFO_FULL_THRHD_S) |
((UART_TXFIFO_TH & UART_TXFIFO_EMPTY_THRHD) << UART_TXFIFO_EMPTY_THRHD_S));
// Disable all existing interrupts and enable ours
WRITE_PERI_REG(UART_INT_CLR(UART0), 0xffff);
SET_PERI_REG_MASK(UART_INT_ENA(UART0), UART_RXFIFO_TOUT_INT_ENA);
SET_PERI_REG_MASK(UART_INT_ENA(UART0), UART_RXFIFO_FULL_INT_ENA);
// Restart the interrupt handler for UART0
ETS_UART_INTR_ATTACH(uart0_intr_handler, NULL);
ETS_UART_INTR_ENABLE();
state.valid = false;
}