You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

561 lines
14 KiB

/* USB API for Teensy USB Development Board
* http://www.pjrc.com/teensy/teensyduino.html
* Copyright (c) 2008 PJRC.COM, LLC
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#include <avr/io.h>
#include <avr/pgmspace.h>
#include <stdint.h>
#include "usb_common.h"
#include "usb_private.h"
#include "usb_api.h"
#include "wiring.h"
void usb_midi_class::sendNoteOff(uint8_t note, uint8_t velocity, uint8_t channel)
{
send_raw(0x08, 0x80 | ((channel - 1) & 0x0F), note & 0x7F, velocity & 0x7F);
}
void usb_midi_class::sendNoteOn(uint8_t note, uint8_t velocity, uint8_t channel)
{
send_raw(0x09, 0x90 | ((channel - 1) & 0x0F), note & 0x7F, velocity & 0x7F);
}
void usb_midi_class::sendPolyPressure(uint8_t note, uint8_t pressure, uint8_t channel)
{
send_raw(0x0A, 0xA0 | ((channel - 1) & 0x0F), note & 0x7F, pressure & 0x7F);
}
void usb_midi_class::sendControlChange(uint8_t control, uint8_t value, uint8_t channel)
{
send_raw(0x0B, 0xB0 | ((channel - 1) & 0x0F), control & 0x7F, value & 0x7F);
}
void usb_midi_class::sendProgramChange(uint8_t program, uint8_t channel)
{
send_raw(0x0C, 0xC0 | ((channel - 1) & 0x0F), program & 0x7F, 0);
}
void usb_midi_class::sendAfterTouch(uint8_t pressure, uint8_t channel)
{
send_raw(0x0D, 0xD0 | ((channel - 1) & 0x0F), pressure & 0x7F, 0);
}
void usb_midi_class::sendPitchBend(uint16_t value, uint8_t channel)
{
send_raw(0x0E, 0xE0 | ((channel - 1) & 0x0F), value & 0x7F, (value >> 7) & 0x7F);
}
void usb_midi_class::sendSysEx(uint8_t length, const uint8_t *data)
{
// TODO: MIDI 2.5 lib automatically adds start and stop bytes
while (length > 3) {
send_raw(0x04, data[0], data[1], data[2]);
data += 3;
length -= 3;
}
if (length == 3) {
send_raw(0x07, data[0], data[1], data[2]);
} else if (length == 2) {
send_raw(0x06, data[0], data[1], 0);
} else if (length == 1) {
send_raw(0x05, data[0], 0, 0);
}
}
void usb_midi_class::send_raw(uint8_t b0, uint8_t b1, uint8_t b2, uint8_t b3)
{
uint8_t intr_state, timeout;
if (!usb_configuration) return;
intr_state = SREG;
cli();
UENUM = MIDI_TX_ENDPOINT;
timeout = UDFNUML + 2;
while (1) {
// are we ready to transmit?
if (UEINTX & (1<<RWAL)) break;
SREG = intr_state;
if (UDFNUML == timeout) return;
if (!usb_configuration) return;
intr_state = SREG;
cli();
UENUM = MIDI_TX_ENDPOINT;
}
UEDATX = b0;
UEDATX = b1;
UEDATX = b2;
UEDATX = b3;
if (!(UEINTX & (1<<RWAL))) UEINTX = 0x3A;
SREG = intr_state;
}
void usb_midi_class::send_now(void)
{
uint8_t intr_state;
if (!usb_configuration) return;
intr_state = SREG;
cli();
UENUM = MIDI_TX_ENDPOINT;
if (UEBCLX != MIDI_TX_SIZE) {
UEINTX = 0x3A;
}
SREG = intr_state;
}
// Convert 10 bit linear measurements to a logarthmic scale
// suitable for sending as MIDI velocity numbers. The
// "range" parameter should be probably be between 30 to 60,
// with 36 probably a good default.
//
// This function uses fast 16 bit unsigned integer math. :-)
//
uint8_t usb_midi_class::analog2velocity(uint16_t val, uint8_t range)
{
#if 0
if (val == 0) return 0;
float scale = 1.0 + (20.0 / (float)range) * log10((float)val / 1023.0);
if (scale < 0) return 0;
return 127 * scale;
#else
uint8_t i, e, b;
uint16_t s=0;
static const uint8_t PROGMEM table[] = {225,124,65,34,17,9,4,2,1};
if (val == 0) return 0;
if (val >= 1023) return 127;
for (e=0; (val & 512) == 0; e++) val <<= 1;
for (i=0; i<9; i++) { // cordic algorithm
uint16_t x = val + (val >> (i + 1));
if (x < 1024) {
val = x;
s += pgm_read_byte(table + i);
}
}
s += e * 385;
s <<= 4;
s += (range >> 1);
s /= range;
if (s >= 1024) return 0;
s = 1024 - s;
if (s > 511) {
s -= 512;
b = 64;
} else if (s > 255) {
s -= 256;
b = 32;
} else {
b = 0;
}
return b + ((s * 127) >> 10);
#endif
}
bool usb_midi_class::read(uint8_t channel)
{
uint8_t c, intr_state;
uint8_t b0, b1, b2, b3, type1, type2;
intr_state = SREG;
cli();
if (!usb_configuration) {
SREG = intr_state;
return false;
}
UENUM = MIDI_RX_ENDPOINT;
retry:
c = UEINTX;
if (!(c & (1<<RWAL))) {
if (c & (1<<RXOUTI)) {
UEINTX = 0x6B;
goto retry;
}
SREG = intr_state;
return false;
}
b0 = UEDATX;
b1 = UEDATX;
b2 = UEDATX;
b3 = UEDATX;
if (!(UEINTX & (1<<RWAL))) UEINTX = 0x6B;
SREG = intr_state;
type1 = b0 & 0x0F;
type2 = b1 & 0xF0;
c = b1 & 0x0F;
if (type1 >= 0x08 && type1 <= 0x0F) {
if (channel && channel != c) {
// ignore other channels when user wants single channel read
return false;
}
if (type1 == 0x08 && type2 == 0x80) {
msg_type = 0; // Note off
if (handleNoteOff) (*handleNoteOff)(c, b2, b3);
goto return_message;
}
if (type1 == 0x09 && type2 == 0x90) {
if (b3) {
msg_type = 1; // Note on
if (handleNoteOn) (*handleNoteOn)(c, b2, b3);
} else {
msg_type = 0; // Note off
if (handleNoteOff) (*handleNoteOff)(c, b2, b3);
}
goto return_message;
}
if (type1 == 0x0A && type2 == 0xA0) {
msg_type = 2; // Poly Pressure
if (handleVelocityChange) (*handleVelocityChange)(c, b2, b3);
goto return_message;
}
if (type1 == 0x0B && type2 == 0xB0) {
msg_type = 3; // Control Change
if (handleControlChange) (*handleControlChange)(c, b2, b3);
goto return_message;
}
if (type1 == 0x0C && type2 == 0xC0) {
msg_type = 4; // Program Change
if (handleProgramChange) (*handleProgramChange)(c, b2);
goto return_message;
}
if (type1 == 0x0D && type2 == 0xD0) {
msg_type = 5; // After Touch
if (handleAfterTouch) (*handleAfterTouch)(c, b2);
goto return_message;
}
if (type1 == 0x0E && type2 == 0xE0) {
msg_type = 6; // Pitch Bend
if (handlePitchChange) (*handlePitchChange)(c,
(b2 & 0x7F) | ((b3 & 0x7F) << 7));
goto return_message;
}
if (type1 == 0x0F && type2 == 0xF0) {
msg_type = 8; // Real Time System
if (handleRealTimeSystem) (*handleRealTimeSystem)(b1);
goto return_message;
}
return false;
return_message:
// only update these when returning true for a parsed message
// all other return cases will preserve these user-visible values
msg_channel = c;
msg_data1 = b2;
msg_data2 = b3;
return true;
}
if (type1 == 0x04) {
read_sysex_byte(b1);
read_sysex_byte(b2);
read_sysex_byte(b3);
return false;
}
if (type1 >= 0x05 && type1 <= 0x07) {
read_sysex_byte(b1);
if (type1 >= 0x06) read_sysex_byte(b2);
if (type1 == 0x07) read_sysex_byte(b3);
msg_data1 = msg_sysex_len;
msg_sysex_len = 0;
return true;
}
return false;
}
void usb_midi_class::read_sysex_byte(uint8_t b)
{
if (msg_sysex_len < USB_MIDI_SYSEX_MAX) {
msg_sysex[msg_sysex_len++] = b;
}
}
static volatile uint8_t prev_byte=0;
void usb_serial_class::begin(long speed)
{
// make sure USB is initialized
usb_init();
uint16_t begin_wait = (uint16_t)millis();
while (1) {
if (usb_configuration) {
delay(200); // a little time for host to load a driver
return;
}
if (usb_suspended) {
uint16_t begin_suspend = (uint16_t)millis();
while (usb_suspended) {
// must remain suspended for a while, because
// normal USB enumeration causes brief suspend
// states, typically under 0.1 second
if ((uint16_t)millis() - begin_suspend > 250) {
return;
}
}
}
// ... or a timout (powered by a USB power adaptor that
// wiggles the data lines to keep a USB device charging)
if ((uint16_t)millis() - begin_wait > 2500) return;
}
prev_byte = 0;
}
void usb_serial_class::end()
{
usb_shutdown();
delay(25);
}
// number of bytes available in the receive buffer
int usb_serial_class::available()
{
uint8_t c;
c = prev_byte; // assume 1 byte static volatile access is atomic
if (c) return 1;
c = readnext();
if (c) {
prev_byte = c;
return 1;
}
return 0;
}
// get the next character, or -1 if nothing received
int usb_serial_class::read()
{
uint8_t c;
c = prev_byte;
if (c) {
prev_byte = 0;
return c;
}
c = readnext();
if (c) return c;
return -1;
}
int usb_serial_class::peek()
{
uint8_t c;
c = prev_byte;
if (c) return c;
c = readnext();
if (c) {
prev_byte = c;
return c;
}
return -1;
}
// get the next character, or 0 if nothing
uint8_t usb_serial_class::readnext(void)
{
uint8_t c, c2, intr_state;
// interrupts are disabled so these functions can be
// used from the main program or interrupt context,
// even both in the same program!
intr_state = SREG;
cli();
if (!usb_configuration) {
SREG = intr_state;
return 0;
}
UENUM = DEBUG_RX_ENDPOINT;
try_again:
if (!(UEINTX & (1<<RWAL))) {
// no packet in buffer
SREG = intr_state;
return 0;
}
// take one byte out of the buffer
c = UEDATX;
if (c == 0) {
// if we see a zero, discard it and
// discard the rest of this packet
UEINTX = 0x6B;
goto try_again;
}
// if this drained the buffer, release it
if (!(UEINTX & (1<<RWAL))) UEINTX = 0x6B;
SREG = intr_state;
return c;
}
// discard any buffered input
void usb_serial_class::flush()
{
uint8_t intr_state;
if (usb_configuration) {
intr_state = SREG;
cli();
UENUM = DEBUG_RX_ENDPOINT;
while ((UEINTX & (1<<RWAL))) {
UEINTX = 0x6B;
}
SREG = intr_state;
}
prev_byte = 0;
}
// transmit a character.
#if ARDUINO >= 100
size_t usb_serial_class::write(uint8_t c)
#else
#define setWriteError()
void usb_serial_class::write(uint8_t c)
#endif
{
//static uint8_t previous_timeout=0;
uint8_t timeout, intr_state;
// if we're not online (enumerated and configured), error
if (!usb_configuration) goto error;
// interrupts are disabled so these functions can be
// used from the main program or interrupt context,
// even both in the same program!
intr_state = SREG;
cli();
UENUM = DEBUG_TX_ENDPOINT;
// if we gave up due to timeout before, don't wait again
#if 0
// this seems to be causig a lockup... why????
if (previous_timeout) {
if (!(UEINTX & (1<<RWAL))) {
SREG = intr_state;
return;
}
previous_timeout = 0;
}
#endif
// wait for the FIFO to be ready to accept data
timeout = UDFNUML + TRANSMIT_TIMEOUT;
while (1) {
// are we ready to transmit?
if (UEINTX & (1<<RWAL)) break;
SREG = intr_state;
// have we waited too long? This happens if the user
// is not running an application that is listening
if (UDFNUML == timeout) {
//previous_timeout = 1;
goto error;
}
// has the USB gone offline?
if (!usb_configuration) goto error;
// get ready to try checking again
intr_state = SREG;
cli();
UENUM = DEBUG_TX_ENDPOINT;
}
// actually write the byte into the FIFO
UEDATX = c;
// if this completed a packet, transmit it now!
if (!(UEINTX & (1<<RWAL))) {
UEINTX = 0x3A;
debug_flush_timer = 0;
} else {
debug_flush_timer = TRANSMIT_FLUSH_TIMEOUT;
}
SREG = intr_state;
#if ARDUINO >= 100
return 1;
#endif
error:
#if ARDUINO >= 100
setWriteError();
return 0;
#else
return;
#endif
}
// These are Teensy-specific extensions to the Serial object
// immediately transmit any buffered output.
// This doesn't actually transmit the data - that is impossible!
// USB devices only transmit when the host allows, so the best
// we can do is release the FIFO buffer for when the host wants it
void usb_serial_class::send_now(void)
{
uint8_t intr_state;
intr_state = SREG;
cli();
if (debug_flush_timer) {
UENUM = DEBUG_TX_ENDPOINT;
while ((UEINTX & (1<<RWAL))) {
UEDATX = 0;
}
UEINTX = 0x3A;
debug_flush_timer = 0;
}
SREG = intr_state;
}
uint32_t usb_serial_class::baud(void)
{
return (DEBUG_TX_SIZE * 1000 / DEBUG_TX_INTERVAL);
}
uint8_t usb_serial_class::stopbits(void)
{
return 0;
}
uint8_t usb_serial_class::paritytype(void)
{
return 0;
}
uint8_t usb_serial_class::numbits(void)
{
return 8;
}
uint8_t usb_serial_class::dtr(void)
{
return 0;
}
uint8_t usb_serial_class::rts(void)
{
return 0;
}
// Preinstantiate Objects //////////////////////////////////////////////////////
usb_serial_class Serial = usb_serial_class();
usb_midi_class usbMIDI = usb_midi_class();