// This file and its companion gdbserver_conn implement a target.Interface // backed by a connection to a debugger speaking the "Gdb Remote Serial // Protocol". // // The "Gdb Remote Serial Protocol" is a low level debugging protocol // originally designed so that gdb could be used to debug programs running // in embedded environments but it was later extended to support programs // running on any environment and a variety of debuggers support it: // gdbserver, lldb-server, macOS's debugserver and rr. // // The protocol is specified at: // https://sourceware.org/gdb/onlinedocs/gdb/Remote-Protocol.html // with additional documentation for lldb specific extensions described at: // https://github.com/llvm-mirror/lldb/blob/master/docs/lldb-gdb-remote.txt // // Terminology: // * inferior: the program we are trying to debug // * stub: the debugger on the other side of the protocol's connection (for // example lldb-server) // * gdbserver: stub version of gdb // * lldb-server: stub version of lldb // * debugserver: a different stub version of lldb, installed with lldb on // macOS. // * mozilla rr: a stub that records the full execution of a program // and can then play it back. // // Implementations of the protocol vary wildly between stubs, while there is // a command to query the stub about supported features (qSupported) this // only covers *some* of the more recent additions to the protocol and most // of the older packets are optional and *not* implemented by all stubs. // For example gdbserver implements 'g' (read all registers) but not 'p' // (read single register) while lldb-server implements 'p' but not 'g'. // // The protocol is also underspecified with regards to how the stub should // handle a multithreaded inferior. Its default mode of operation is // "all-stop mode", when a thread hits a breakpoint all other threads are // also stopped. But the protocol doesn't say what happens if a second // thread hits a breakpoint while the stub is in the process of stopping all // other threads. // // In practice the stub is allowed to swallow the second breakpoint hit or // to return it at a later time. If the stub chooses the latter behavior // (like gdbserver does) it is allowed to return delayed events on *any* // vCont packet. This is incredibly inconvenient since if we get notified // about a delayed breakpoint while we are trying to singlestep another // thread it's impossible to know when the singlestep we requested ended. // // What this means is that gdbserver can only be supported for multithreaded // inferiors by selecting non-stop mode, which behaves in a markedly // different way from all-stop mode and isn't supported by anything except // gdbserver. // // lldb-server/debugserver takes a different approach, only the first stop // event is reported, if any other event happens "simultaneously" they are // suppressed by the stub and the debugger can query for them using // qThreadStopInfo. This is much easier for us to implement and the // implementation gracefully degrades to the case where qThreadStopInfo is // unavailable but the inferior is run in single threaded mode. // // Therefore the following code will assume lldb-server-like behavior. package gdbserial import ( "bytes" "debug/macho" "encoding/binary" "errors" "fmt" "go/ast" "io/ioutil" "net" "os" "os/exec" "runtime" "strconv" "strings" "sync" "time" "golang.org/x/arch/x86/x86asm" "github.com/derekparker/delve/pkg/logflags" "github.com/derekparker/delve/pkg/proc" "github.com/derekparker/delve/pkg/proc/linutil" "github.com/mattn/go-isatty" "github.com/sirupsen/logrus" ) const ( gdbWireFullStopPacket = false gdbWireMaxLen = 120 maxTransmitAttempts = 3 // number of retransmission attempts on failed checksum initialInputBufferSize = 2048 // size of the input buffer for gdbConn ) const heartbeatInterval = 10 * time.Second // ErrDirChange is returned when trying to change execution direction // while there are still internal breakpoints set. var ErrDirChange = errors.New("direction change with internal breakpoints") // Process implements proc.Process using a connection to a debugger stub // that understands Gdb Remote Serial Protocol. type Process struct { bi *proc.BinaryInfo conn gdbConn threads map[int]*Thread currentThread *Thread selectedGoroutine *proc.G exited, detached bool ctrlC bool // ctrl-c was sent to stop inferior manualStopRequested bool breakpoints proc.BreakpointMap gcmdok bool // true if the stub supports g and G commands threadStopInfo bool // true if the stub supports qThreadStopInfo tracedir string // if attached to rr the path to the trace directory loadGInstrAddr uint64 // address of the g loading instruction, zero if we couldn't allocate it process *os.Process waitChan chan *os.ProcessState common proc.CommonProcess } // Thread is a thread. type Thread struct { ID int strID string regs gdbRegisters CurrentBreakpoint proc.BreakpointState p *Process setbp bool // thread was stopped because of a breakpoint common proc.CommonThread } // ErrBackendUnavailable is returned when the stub program can not be found. type ErrBackendUnavailable struct { } func (err *ErrBackendUnavailable) Error() string { return "backend unavailable" } // gdbRegisters represents the current value of the registers of a thread. // The storage space for all the registers is allocated as a single memory // block in buf, the value field inside an individual gdbRegister will be a // slice of the global buf field. type gdbRegisters struct { regs map[string]gdbRegister regsInfo []gdbRegisterInfo tls uint64 gaddr uint64 hasgaddr bool buf []byte } type gdbRegister struct { value []byte regnum int } // New creates a new Process instance. // If process is not nil it is the stub's process and will be killed after // Detach. // Use Listen, Dial or Connect to complete connection. func New(process *os.Process) *Process { logger := logrus.New().WithFields(logrus.Fields{"layer": "gdbconn"}) logger.Logger.Level = logrus.DebugLevel if !logflags.GdbWire() { logger.Logger.Out = ioutil.Discard } p := &Process{ conn: gdbConn{ maxTransmitAttempts: maxTransmitAttempts, inbuf: make([]byte, 0, initialInputBufferSize), direction: proc.Forward, log: logger, }, threads: make(map[int]*Thread), bi: proc.NewBinaryInfo(runtime.GOOS, runtime.GOARCH), breakpoints: proc.NewBreakpointMap(), gcmdok: true, threadStopInfo: true, process: process, common: proc.NewCommonProcess(true), } if process != nil { p.waitChan = make(chan *os.ProcessState) go func() { state, _ := process.Wait() p.waitChan <- state }() } return p } // Listen waits for a connection from the stub. func (p *Process) Listen(listener net.Listener, path string, pid int) error { acceptChan := make(chan net.Conn) go func() { conn, _ := listener.Accept() acceptChan <- conn }() select { case conn := <-acceptChan: listener.Close() if conn == nil { return errors.New("could not connect") } return p.Connect(conn, path, pid) case status := <-p.waitChan: listener.Close() return fmt.Errorf("stub exited while waiting for connection: %v", status) } } // Dial attempts to connect to the stub. func (p *Process) Dial(addr string, path string, pid int) error { for { conn, err := net.Dial("tcp", addr) if err == nil { return p.Connect(conn, path, pid) } select { case status := <-p.waitChan: return fmt.Errorf("stub exited while attempting to connect: %v", status) default: } time.Sleep(time.Second) } } // Connect connects to a stub and performs a handshake. // // Path and pid are, respectively, the path to the executable of the target // program and the PID of the target process, both are optional, however // some stubs do not provide ways to determine path and pid automatically // and Connect will be unable to function without knowing them. func (p *Process) Connect(conn net.Conn, path string, pid int) error { p.conn.conn = conn p.conn.pid = pid err := p.conn.handshake() if err != nil { conn.Close() return err } if verbuf, err := p.conn.exec([]byte("$qGDBServerVersion"), "init"); err == nil { for _, v := range strings.Split(string(verbuf), ";") { if strings.HasPrefix(v, "version:") { if v[len("version:"):] == "902" { // Workaround for https://bugs.llvm.org/show_bug.cgi?id=36968, 'g' command crashes a version of debugserver on some systems (?) p.gcmdok = false break } } } } if path == "" { // If we are attaching to a running process and the user didn't specify // the executable file manually we must ask the stub for it. // We support both qXfer:exec-file:read:: (the gdb way) and calling // qProcessInfo (the lldb way). // Unfortunately debugserver on macOS supports neither. path, err = p.conn.readExecFile() if err != nil { if isProtocolErrorUnsupported(err) { _, path, err = p.loadProcessInfo(pid) if err != nil { conn.Close() return err } } else { conn.Close() return fmt.Errorf("could not determine executable path: %v", err) } } } if path == "" { // try using jGetLoadedDynamicLibrariesInfos which is the only way to do // this supported on debugserver (but only on macOS >= 12.10) images, _ := p.conn.getLoadedDynamicLibraries() for _, image := range images { if image.MachHeader.FileType == macho.TypeExec { path = image.Pathname break } } } var entryPoint uint64 if auxv, err := p.conn.readAuxv(); err == nil { // If we can't read the auxiliary vector it just means it's not supported // by the OS or by the stub. If we are debugging a PIE and the entry point // is needed proc.LoadBinaryInfo will complain about it. entryPoint = linutil.EntryPointFromAuxvAMD64(auxv) } var wg sync.WaitGroup err = p.bi.LoadBinaryInfo(path, entryPoint, &wg) wg.Wait() if err == nil { err = p.bi.LoadError() } if err != nil { conn.Close() return err } // None of the stubs we support returns the value of fs_base or gs_base // along with the registers, therefore we have to resort to executing a MOV // instruction on the inferior to find out where the G struct of a given // thread is located. // Here we try to allocate some memory on the inferior which we will use to // store the MOV instruction. // If the stub doesn't support memory allocation reloadRegisters will // overwrite some existing memory to store the MOV. if addr, err := p.conn.allocMemory(256); err == nil { if _, err := p.conn.writeMemory(uintptr(addr), p.loadGInstr()); err == nil { p.loadGInstrAddr = addr } } err = p.updateThreadList(&threadUpdater{p: p}) if err != nil { conn.Close() p.bi.Close() return err } if p.conn.pid <= 0 { p.conn.pid, _, err = p.loadProcessInfo(0) if err != nil && !isProtocolErrorUnsupported(err) { conn.Close() p.bi.Close() return err } } p.selectedGoroutine, _ = proc.GetG(p.CurrentThread()) proc.CreateUnrecoveredPanicBreakpoint(p, p.writeBreakpoint, &p.breakpoints) panicpc, err := proc.FindFunctionLocation(p, "runtime.startpanic", true, 0) if err == nil { bp, err := p.breakpoints.SetWithID(-1, panicpc, p.writeBreakpoint) if err == nil { bp.Name = proc.UnrecoveredPanic bp.Variables = []string{"runtime.curg._panic.arg"} } } return nil } // unusedPort returns an unused tcp port // This is a hack and subject to a race condition with other running // programs, but most (all?) OS will cycle through all ephemeral ports // before reassigning one port they just assigned, unless there's heavy // churn in the ephemeral range this should work. func unusedPort() string { listener, err := net.Listen("tcp", "localhost:0") if err != nil { return ":8081" } port := listener.Addr().(*net.TCPAddr).Port listener.Close() return fmt.Sprintf(":%d", port) } const debugserverExecutable = "/Library/Developer/CommandLineTools/Library/PrivateFrameworks/LLDB.framework/Versions/A/Resources/debugserver" // ErrUnsupportedOS is returned when trying to use the lldb backend on Windows. var ErrUnsupportedOS = errors.New("lldb backend not supported on Windows") func getLdEnvVars() []string { var result []string environ := os.Environ() for i := 0; i < len(environ); i++ { if strings.HasPrefix(environ[i], "LD_") || strings.HasPrefix(environ[i], "DYLD_") { result = append(result, "-e", environ[i]) } } return result } // LLDBLaunch starts an instance of lldb-server and connects to it, asking // it to launch the specified target program with the specified arguments // (cmd) on the specified directory wd. func LLDBLaunch(cmd []string, wd string, foreground bool) (*Process, error) { switch runtime.GOOS { case "windows": return nil, ErrUnsupportedOS default: // check that the argument to Launch is an executable file if fi, staterr := os.Stat(cmd[0]); staterr == nil && (fi.Mode()&0111) == 0 { return nil, proc.ErrNotExecutable } } if foreground { // Disable foregrounding if we can't open /dev/tty or debugserver will // crash. See issue #1215. if !isatty.IsTerminal(os.Stdin.Fd()) { foreground = false } } isDebugserver := false var listener net.Listener var port string var proc *exec.Cmd if _, err := os.Stat(debugserverExecutable); err == nil { listener, err = net.Listen("tcp", "localhost:0") if err != nil { return nil, err } ldEnvVars := getLdEnvVars() args := make([]string, 0, len(cmd)+4+len(ldEnvVars)) args = append(args, ldEnvVars...) if foreground { args = append(args, "--stdio-path", "/dev/tty") } args = append(args, "-F", "-R", fmt.Sprintf("127.0.0.1:%d", listener.Addr().(*net.TCPAddr).Port), "--") args = append(args, cmd...) isDebugserver = true proc = exec.Command(debugserverExecutable, args...) } else { if _, err := exec.LookPath("lldb-server"); err != nil { return nil, &ErrBackendUnavailable{} } port = unusedPort() args := make([]string, 0, len(cmd)+3) args = append(args, "gdbserver") args = append(args, port, "--") args = append(args, cmd...) proc = exec.Command("lldb-server", args...) } if logflags.LLDBServerOutput() || logflags.GdbWire() || foreground { proc.Stdout = os.Stdout proc.Stderr = os.Stderr } if foreground { foregroundSignalsIgnore() proc.Stdin = os.Stdin } if wd != "" { proc.Dir = wd } proc.SysProcAttr = sysProcAttr(foreground) err := proc.Start() if err != nil { return nil, err } p := New(proc.Process) p.conn.isDebugserver = isDebugserver if listener != nil { err = p.Listen(listener, cmd[0], 0) } else { err = p.Dial(port, cmd[0], 0) } if err != nil { return nil, err } return p, nil } // LLDBAttach starts an instance of lldb-server and connects to it, asking // it to attach to the specified pid. // Path is path to the target's executable, path only needs to be specified // for some stubs that do not provide an automated way of determining it // (for example debugserver). func LLDBAttach(pid int, path string) (*Process, error) { if runtime.GOOS == "windows" { return nil, ErrUnsupportedOS } isDebugserver := false var proc *exec.Cmd var listener net.Listener var port string if _, err := os.Stat(debugserverExecutable); err == nil { isDebugserver = true listener, err = net.Listen("tcp", "localhost:0") if err != nil { return nil, err } proc = exec.Command(debugserverExecutable, "-R", fmt.Sprintf("127.0.0.1:%d", listener.Addr().(*net.TCPAddr).Port), "--attach="+strconv.Itoa(pid)) } else { if _, err := exec.LookPath("lldb-server"); err != nil { return nil, &ErrBackendUnavailable{} } port = unusedPort() proc = exec.Command("lldb-server", "gdbserver", "--attach", strconv.Itoa(pid), port) } proc.Stdout = os.Stdout proc.Stderr = os.Stderr proc.SysProcAttr = sysProcAttr(false) err := proc.Start() if err != nil { return nil, err } p := New(proc.Process) p.conn.isDebugserver = isDebugserver if listener != nil { err = p.Listen(listener, path, pid) } else { err = p.Dial(port, path, pid) } if err != nil { return nil, err } return p, nil } // loadProcessInfo uses qProcessInfo to load the inferior's PID and // executable path. This command is not supported by all stubs and not all // stubs will report both the PID and executable path. func (p *Process) loadProcessInfo(pid int) (int, string, error) { pi, err := p.conn.queryProcessInfo(pid) if err != nil { return 0, "", err } if pid == 0 { n, _ := strconv.ParseUint(pi["pid"], 16, 64) pid = int(n) } return pid, pi["name"], nil } // BinInfo returns information on the binary. func (p *Process) BinInfo() *proc.BinaryInfo { return p.bi } // Recorded returns whether or not we are debugging // a recorded "traced" program. func (p *Process) Recorded() (bool, string) { return p.tracedir != "", p.tracedir } // Pid returns the process ID. func (p *Process) Pid() int { return int(p.conn.pid) } // Valid returns true if we are not detached // and the process has not exited. func (p *Process) Valid() (bool, error) { if p.detached { return false, &proc.ProcessDetachedError{} } if p.exited { return false, &proc.ErrProcessExited{Pid: p.Pid()} } return true, nil } // ResumeNotify specifies a channel that will be closed the next time // ContinueOnce finishes resuming the target. func (p *Process) ResumeNotify(ch chan<- struct{}) { p.conn.resumeChan = ch } // FindThread returns the thread with the given ID. func (p *Process) FindThread(threadID int) (proc.Thread, bool) { thread, ok := p.threads[threadID] return thread, ok } // ThreadList returns all threads in the process. func (p *Process) ThreadList() []proc.Thread { r := make([]proc.Thread, 0, len(p.threads)) for _, thread := range p.threads { r = append(r, thread) } return r } // CurrentThread returns the current active // selected thread. func (p *Process) CurrentThread() proc.Thread { return p.currentThread } // Common returns common information across Process implementations. func (p *Process) Common() *proc.CommonProcess { return &p.common } // SelectedGoroutine returns the current actuve selected goroutine. func (p *Process) SelectedGoroutine() *proc.G { return p.selectedGoroutine } const ( interruptSignal = 0x2 breakpointSignal = 0x5 childSignal = 0x11 stopSignal = 0x13 ) // ContinueOnce will continue execution of the process until // a breakpoint is hit or signal is received. func (p *Process) ContinueOnce() (proc.Thread, error) { if p.exited { return nil, &proc.ErrProcessExited{Pid: p.conn.pid} } if p.conn.direction == proc.Forward { // step threads stopped at any breakpoint over their breakpoint for _, thread := range p.threads { if thread.CurrentBreakpoint.Breakpoint != nil { if err := thread.stepInstruction(&threadUpdater{p: p}); err != nil { return nil, err } } } } p.common.ClearAllGCache() for _, th := range p.threads { th.clearBreakpointState() } p.setCtrlC(false) // resume all threads var threadID string var sig uint8 = 0 var tu = threadUpdater{p: p} var err error continueLoop: for { tu.Reset() threadID, sig, err = p.conn.resume(sig, &tu) if err != nil { if _, exited := err.(proc.ErrProcessExited); exited { p.exited = true } return nil, err } // 0x5 is always a breakpoint, a manual stop either manifests as 0x13 // (lldb), 0x11 (debugserver) or 0x2 (gdbserver). // Since 0x2 could also be produced by the user // pressing ^C (in which case it should be passed to the inferior) we need // the ctrlC flag to know that we are the originators. switch sig { case interruptSignal: // interrupt if p.getCtrlC() { break continueLoop } case breakpointSignal: // breakpoint break continueLoop case childSignal: // stop on debugserver but SIGCHLD on lldb-server/linux if p.conn.isDebugserver { break continueLoop } case stopSignal: // stop break continueLoop // The following are fake BSD-style signals sent by debugserver // Unfortunately debugserver can not convert them into signals for the // process so we must stop here. case 0x91, 0x92, 0x93, 0x94, 0x95, 0x96: /* TARGET_EXC_BAD_ACCESS */ break continueLoop default: // any other signal is always propagated to inferior } } if err := p.updateThreadList(&tu); err != nil { return nil, err } if err := p.setCurrentBreakpoints(); err != nil { return nil, err } for _, thread := range p.threads { if thread.strID == threadID { var err error = nil switch sig { case 0x91: err = errors.New("bad access") case 0x92: err = errors.New("bad instruction") case 0x93: err = errors.New("arithmetic exception") case 0x94: err = errors.New("emulation exception") case 0x95: err = errors.New("software exception") case 0x96: err = errors.New("breakpoint exception") } return thread, err } } return nil, fmt.Errorf("could not find thread %s", threadID) } // StepInstruction will step exactly one CPU instruction. func (p *Process) StepInstruction() error { thread := p.currentThread if p.selectedGoroutine != nil { if p.selectedGoroutine.Thread == nil { if _, err := p.SetBreakpoint(p.selectedGoroutine.PC, proc.NextBreakpoint, proc.SameGoroutineCondition(p.selectedGoroutine)); err != nil { return err } return proc.Continue(p) } thread = p.selectedGoroutine.Thread.(*Thread) } p.common.ClearAllGCache() if p.exited { return &proc.ErrProcessExited{Pid: p.conn.pid} } thread.clearBreakpointState() err := thread.StepInstruction() if err != nil { return err } err = thread.SetCurrentBreakpoint() if err != nil { return err } if g, _ := proc.GetG(thread); g != nil { p.selectedGoroutine = g } return nil } // SwitchThread will change the internal selected thread. func (p *Process) SwitchThread(tid int) error { if p.exited { return proc.ErrProcessExited{Pid: p.conn.pid} } if th, ok := p.threads[tid]; ok { p.currentThread = th p.selectedGoroutine, _ = proc.GetG(p.CurrentThread()) return nil } return fmt.Errorf("thread %d does not exist", tid) } // SwitchGoroutine will change the internal selected goroutine. func (p *Process) SwitchGoroutine(gid int) error { g, err := proc.FindGoroutine(p, gid) if err != nil { return err } if g == nil { // user specified -1 and selectedGoroutine is nil return nil } if g.Thread != nil { return p.SwitchThread(g.Thread.ThreadID()) } p.selectedGoroutine = g return nil } // RequestManualStop will attempt to stop the process // without a breakpoint or signal having been recieved. func (p *Process) RequestManualStop() error { p.conn.manualStopMutex.Lock() p.manualStopRequested = true if !p.conn.running { p.conn.manualStopMutex.Unlock() return nil } p.ctrlC = true p.conn.manualStopMutex.Unlock() return p.conn.sendCtrlC() } // CheckAndClearManualStopRequest will check for a manual // stop and then clear that state. func (p *Process) CheckAndClearManualStopRequest() bool { p.conn.manualStopMutex.Lock() msr := p.manualStopRequested p.manualStopRequested = false p.conn.manualStopMutex.Unlock() return msr } func (p *Process) setCtrlC(v bool) { p.conn.manualStopMutex.Lock() p.ctrlC = v p.conn.manualStopMutex.Unlock() } func (p *Process) getCtrlC() bool { p.conn.manualStopMutex.Lock() defer p.conn.manualStopMutex.Unlock() return p.ctrlC } // Detach will detach from the target process, // if 'kill' is true it will also kill the process. func (p *Process) Detach(kill bool) error { if kill && !p.exited { err := p.conn.kill() if err != nil { if _, exited := err.(proc.ErrProcessExited); !exited { return err } p.exited = true } } if !p.exited { if err := p.conn.detach(); err != nil { return err } } if p.process != nil { p.process.Kill() <-p.waitChan p.process = nil } p.detached = true return p.bi.Close() } // Restart will restart the process from the given position. func (p *Process) Restart(pos string) error { if p.tracedir == "" { return proc.ErrNotRecorded } p.exited = false p.common.ClearAllGCache() for _, th := range p.threads { th.clearBreakpointState() } p.setCtrlC(false) err := p.conn.restart(pos) if err != nil { return err } // for some reason we have to send a vCont;c after a vRun to make rr behave // properly, because that's what gdb does. _, _, err = p.conn.resume(0, nil) if err != nil { return err } err = p.updateThreadList(&threadUpdater{p: p}) if err != nil { return err } p.selectedGoroutine, _ = proc.GetG(p.CurrentThread()) for addr := range p.breakpoints.M { p.conn.setBreakpoint(addr) } return p.setCurrentBreakpoints() } // When executes the 'when' command for the Mozilla RR backend. // This command will return rr's internal event number. func (p *Process) When() (string, error) { if p.tracedir == "" { return "", proc.ErrNotRecorded } event, err := p.conn.qRRCmd("when") if err != nil { return "", err } return strings.TrimSpace(event), nil } const ( checkpointPrefix = "Checkpoint " ) // Checkpoint creates a checkpoint from which you can restart the program. func (p *Process) Checkpoint(where string) (int, error) { if p.tracedir == "" { return -1, proc.ErrNotRecorded } resp, err := p.conn.qRRCmd("checkpoint", where) if err != nil { return -1, err } if !strings.HasPrefix(resp, checkpointPrefix) { return -1, fmt.Errorf("can not parse checkpoint response %q", resp) } idstr := resp[len(checkpointPrefix):] space := strings.Index(idstr, " ") if space < 0 { return -1, fmt.Errorf("can not parse checkpoint response %q", resp) } idstr = idstr[:space] cpid, err := strconv.Atoi(idstr) if err != nil { return -1, err } return cpid, nil } // Checkpoints returns a list of all checkpoints set. func (p *Process) Checkpoints() ([]proc.Checkpoint, error) { if p.tracedir == "" { return nil, proc.ErrNotRecorded } resp, err := p.conn.qRRCmd("info checkpoints") if err != nil { return nil, err } lines := strings.Split(resp, "\n") r := make([]proc.Checkpoint, 0, len(lines)-1) for _, line := range lines[1:] { if line == "" { continue } fields := strings.Split(line, "\t") if len(fields) != 3 { return nil, fmt.Errorf("can not parse \"info checkpoints\" output line %q", line) } cpid, err := strconv.Atoi(fields[0]) if err != nil { return nil, fmt.Errorf("can not parse \"info checkpoints\" output line %q: %v", line, err) } r = append(r, proc.Checkpoint{cpid, fields[1], fields[2]}) } return r, nil } const deleteCheckpointPrefix = "Deleted checkpoint " // ClearCheckpoint clears the checkpoint for the given ID. func (p *Process) ClearCheckpoint(id int) error { if p.tracedir == "" { return proc.ErrNotRecorded } resp, err := p.conn.qRRCmd("delete checkpoint", strconv.Itoa(id)) if err != nil { return err } if !strings.HasPrefix(resp, deleteCheckpointPrefix) { return errors.New(resp) } return nil } // Direction sets whether to run the program forwards or in reverse execution. func (p *Process) Direction(dir proc.Direction) error { if p.tracedir == "" { return proc.ErrNotRecorded } if p.conn.conn == nil { return proc.ErrProcessExited{Pid: p.conn.pid} } if p.conn.direction == dir { return nil } if p.Breakpoints().HasInternalBreakpoints() { return ErrDirChange } p.conn.direction = dir return nil } // Breakpoints returns the list of breakpoints currently set. func (p *Process) Breakpoints() *proc.BreakpointMap { return &p.breakpoints } // FindBreakpoint returns the breakpoint at the given address. func (p *Process) FindBreakpoint(pc uint64) (*proc.Breakpoint, bool) { // Check to see if address is past the breakpoint, (i.e. breakpoint was hit). if bp, ok := p.breakpoints.M[pc-uint64(p.bi.Arch.BreakpointSize())]; ok { return bp, true } // Directly use addr to lookup breakpoint. if bp, ok := p.breakpoints.M[pc]; ok { return bp, true } return nil, false } func (p *Process) writeBreakpoint(addr uint64) (string, int, *proc.Function, []byte, error) { f, l, fn := p.bi.PCToLine(uint64(addr)) if fn == nil { return "", 0, nil, nil, proc.InvalidAddressError{Address: addr} } if err := p.conn.setBreakpoint(addr); err != nil { return "", 0, nil, nil, err } return f, l, fn, nil, nil } // SetBreakpoint creates a new breakpoint. func (p *Process) SetBreakpoint(addr uint64, kind proc.BreakpointKind, cond ast.Expr) (*proc.Breakpoint, error) { if p.exited { return nil, &proc.ErrProcessExited{Pid: p.conn.pid} } return p.breakpoints.Set(addr, kind, cond, p.writeBreakpoint) } // ClearBreakpoint clears a breakpoint at the given address. func (p *Process) ClearBreakpoint(addr uint64) (*proc.Breakpoint, error) { if p.exited { return nil, &proc.ErrProcessExited{Pid: p.conn.pid} } return p.breakpoints.Clear(addr, func(bp *proc.Breakpoint) error { return p.conn.clearBreakpoint(bp.Addr) }) } // ClearInternalBreakpoints clear all internal use breakpoints like those set by 'next'. func (p *Process) ClearInternalBreakpoints() error { return p.breakpoints.ClearInternalBreakpoints(func(bp *proc.Breakpoint) error { if err := p.conn.clearBreakpoint(bp.Addr); err != nil { return err } for _, thread := range p.threads { if thread.CurrentBreakpoint.Breakpoint == bp { thread.clearBreakpointState() } } return nil }) } type threadUpdater struct { p *Process seen map[int]bool done bool } func (tu *threadUpdater) Reset() { tu.done = false tu.seen = nil } func (tu *threadUpdater) Add(threads []string) error { if tu.done { panic("threadUpdater: Add after Finish") } if tu.seen == nil { tu.seen = map[int]bool{} } for _, threadID := range threads { b := threadID if period := strings.Index(b, "."); period >= 0 { b = b[period+1:] } n, err := strconv.ParseUint(b, 16, 32) if err != nil { return &GdbMalformedThreadIDError{threadID} } tid := int(n) tu.seen[tid] = true if _, found := tu.p.threads[tid]; !found { tu.p.threads[tid] = &Thread{ID: tid, strID: threadID, p: tu.p} } } return nil } func (tu *threadUpdater) Finish() { tu.done = true for threadID := range tu.p.threads { _, threadSeen := tu.seen[threadID] if threadSeen { continue } delete(tu.p.threads, threadID) if tu.p.currentThread.ID == threadID { tu.p.currentThread = nil } } if tu.p.currentThread != nil { if _, exists := tu.p.threads[tu.p.currentThread.ID]; !exists { // current thread was removed tu.p.currentThread = nil } } if tu.p.currentThread == nil { for _, thread := range tu.p.threads { tu.p.currentThread = thread break } } } // updateThreadsList retrieves the list of inferior threads from the stub // and passes it to the threadUpdater. // Then it reloads the register information for all running threads. // Some stubs will return the list of running threads in the stop packet, if // this happens the threadUpdater will know that we have already updated the // thread list and the first step of updateThreadList will be skipped. // Registers are always reloaded. func (p *Process) updateThreadList(tu *threadUpdater) error { if !tu.done { first := true for { threads, err := p.conn.queryThreads(first) if err != nil { return err } if len(threads) == 0 { break } first = false if err := tu.Add(threads); err != nil { return err } } tu.Finish() } if p.threadStopInfo { for _, th := range p.threads { sig, reason, err := p.conn.threadStopInfo(th.strID) if err != nil { if isProtocolErrorUnsupported(err) { p.threadStopInfo = false break } return err } th.setbp = (reason == "breakpoint" || (reason == "" && sig == breakpointSignal)) } } for _, thread := range p.threads { if err := thread.reloadRegisters(); err != nil { return err } } return nil } func (p *Process) setCurrentBreakpoints() error { if p.threadStopInfo { for _, th := range p.threads { if th.setbp { err := th.SetCurrentBreakpoint() if err != nil { return err } } } } if !p.threadStopInfo { for _, th := range p.threads { if th.CurrentBreakpoint.Breakpoint == nil { err := th.SetCurrentBreakpoint() if err != nil { return err } } } } return nil } // ReadMemory will read into 'data' memory at the address provided. func (t *Thread) ReadMemory(data []byte, addr uintptr) (n int, err error) { err = t.p.conn.readMemory(data, addr) if err != nil { return 0, err } return len(data), nil } // WriteMemory will write into the memory at 'addr' the data provided. func (t *Thread) WriteMemory(addr uintptr, data []byte) (written int, err error) { return t.p.conn.writeMemory(addr, data) } // Location returns the current location of this thread. func (t *Thread) Location() (*proc.Location, error) { regs, err := t.Registers(false) if err != nil { return nil, err } pc := regs.PC() f, l, fn := t.p.bi.PCToLine(pc) return &proc.Location{PC: pc, File: f, Line: l, Fn: fn}, nil } // Breakpoint returns the current active breakpoint for this thread. func (t *Thread) Breakpoint() proc.BreakpointState { return t.CurrentBreakpoint } // ThreadID returns this threads ID. func (t *Thread) ThreadID() int { return t.ID } // Registers returns the CPU registers for this thread. func (t *Thread) Registers(floatingPoint bool) (proc.Registers, error) { return &t.regs, nil } // RestoreRegisters will set the CPU registers the value of those provided. func (t *Thread) RestoreRegisters(savedRegs proc.Registers) error { copy(t.regs.buf, savedRegs.(*gdbRegisters).buf) return t.writeRegisters() } // Arch will return the CPU architecture for the target. func (t *Thread) Arch() proc.Arch { return t.p.bi.Arch } // BinInfo will return information on the binary being debugged. func (t *Thread) BinInfo() *proc.BinaryInfo { return t.p.bi } // Common returns common information across Process implementations. func (t *Thread) Common() *proc.CommonThread { return &t.common } func (t *Thread) stepInstruction(tu *threadUpdater) error { pc := t.regs.PC() if _, atbp := t.p.breakpoints.M[pc]; atbp { err := t.p.conn.clearBreakpoint(pc) if err != nil { return err } defer t.p.conn.setBreakpoint(pc) } _, _, err := t.p.conn.step(t.strID, tu) return err } // StepInstruction will step exactly 1 CPU instruction. func (t *Thread) StepInstruction() error { if err := t.stepInstruction(&threadUpdater{p: t.p}); err != nil { return err } return t.reloadRegisters() } // Blocked returns true if the thread is blocked in runtime or kernel code. func (t *Thread) Blocked() bool { regs, err := t.Registers(false) if err != nil { return false } pc := regs.PC() f, ln, fn := t.BinInfo().PCToLine(pc) if fn == nil { if f == "" && ln == 0 { return true } return false } switch fn.Name { case "runtime.futex", "runtime.usleep", "runtime.clone": return true case "runtime.kevent": return true case "runtime.mach_semaphore_wait", "runtime.mach_semaphore_timedwait": return true default: return strings.HasPrefix(fn.Name, "syscall.Syscall") || strings.HasPrefix(fn.Name, "syscall.RawSyscall") } return false } // loadGInstr returns the correct MOV instruction for the current // OS/architecture that can be executed to load the address of G from an // inferior's thread. func (p *Process) loadGInstr() []byte { var op []byte switch p.bi.GOOS { case "windows": // mov rcx, QWORD PTR gs:{uint32(off)} op = []byte{0x65, 0x48, 0x8b, 0x0c, 0x25} case "linux": // mov rcx,QWORD PTR fs:{uint32(off)} op = []byte{0x64, 0x48, 0x8B, 0x0C, 0x25} case "darwin": // mov rcx,QWORD PTR gs:{uint32(off)} op = []byte{0x65, 0x48, 0x8B, 0x0C, 0x25} default: panic("unsupported operating system attempting to find Goroutine on Thread") } buf := &bytes.Buffer{} buf.Write(op) binary.Write(buf, binary.LittleEndian, uint32(p.bi.GStructOffset())) return buf.Bytes() } func (regs *gdbRegisters) init(regsInfo []gdbRegisterInfo) { regs.regs = make(map[string]gdbRegister) regs.regsInfo = regsInfo regsz := 0 for _, reginfo := range regsInfo { if endoff := reginfo.Offset + (reginfo.Bitsize / 8); endoff > regsz { regsz = endoff } } regs.buf = make([]byte, regsz) for _, reginfo := range regsInfo { regs.regs[reginfo.Name] = gdbRegister{regnum: reginfo.Regnum, value: regs.buf[reginfo.Offset : reginfo.Offset+reginfo.Bitsize/8]} } } // reloadRegisters loads the current value of the thread's registers. // It will also load the address of the thread's G. // Loading the address of G can be done in one of two ways reloadGAlloc, if // the stub can allocate memory, or reloadGAtPC, if the stub can't. func (t *Thread) reloadRegisters() error { if t.regs.regs == nil { t.regs.init(t.p.conn.regsInfo) } if t.p.gcmdok { if err := t.p.conn.readRegisters(t.strID, t.regs.buf); err != nil { if isProtocolErrorUnsupported(err) { t.p.gcmdok = false } else { return err } } } if !t.p.gcmdok { for _, reginfo := range t.p.conn.regsInfo { if err := t.p.conn.readRegister(t.strID, reginfo.Regnum, t.regs.regs[reginfo.Name].value); err != nil { return err } } } switch t.p.bi.GOOS { case "linux": if reg, hasFsBase := t.regs.regs[regnameFsBase]; hasFsBase { t.regs.gaddr = 0 t.regs.tls = binary.LittleEndian.Uint64(reg.value) t.regs.hasgaddr = false return nil } } if t.p.loadGInstrAddr > 0 { return t.reloadGAlloc() } return t.reloadGAtPC() } func (t *Thread) writeSomeRegisters(regNames ...string) error { if t.p.gcmdok { return t.p.conn.writeRegisters(t.strID, t.regs.buf) } for _, regName := range regNames { if err := t.p.conn.writeRegister(t.strID, t.regs.regs[regName].regnum, t.regs.regs[regName].value); err != nil { return err } } return nil } func (t *Thread) writeRegisters() error { if t.p.gcmdok { return t.p.conn.writeRegisters(t.strID, t.regs.buf) } for _, r := range t.regs.regs { if err := t.p.conn.writeRegister(t.strID, r.regnum, r.value); err != nil { return err } } return nil } func (t *Thread) readSomeRegisters(regNames ...string) error { if t.p.gcmdok { return t.p.conn.readRegisters(t.strID, t.regs.buf) } for _, regName := range regNames { err := t.p.conn.readRegister(t.strID, t.regs.regs[regName].regnum, t.regs.regs[regName].value) if err != nil { return err } } return nil } // reloadGAtPC overwrites the instruction that the thread is stopped at with // the MOV instruction used to load current G, executes this single // instruction and then puts everything back the way it was. func (t *Thread) reloadGAtPC() error { movinstr := t.p.loadGInstr() if t.Blocked() { t.regs.tls = 0 t.regs.gaddr = 0 t.regs.hasgaddr = true return nil } cx := t.regs.CX() pc := t.regs.PC() // We are partially replicating the code of GdbserverThread.stepInstruction // here. // The reason is that lldb-server has a bug with writing to memory and // setting/clearing breakpoints to that same memory which we must work // around by clearing and re-setting the breakpoint in a specific sequence // with the memory writes. // Additionally all breakpoints in [pc, pc+len(movinstr)] need to be removed for addr := range t.p.breakpoints.M { if addr >= pc && addr <= pc+uint64(len(movinstr)) { err := t.p.conn.clearBreakpoint(addr) if err != nil { return err } defer t.p.conn.setBreakpoint(addr) } } savedcode := make([]byte, len(movinstr)) _, err := t.ReadMemory(savedcode, uintptr(pc)) if err != nil { return err } _, err = t.WriteMemory(uintptr(pc), movinstr) if err != nil { return err } defer func() { _, err0 := t.WriteMemory(uintptr(pc), savedcode) if err == nil { err = err0 } t.regs.setPC(pc) t.regs.setCX(cx) err1 := t.writeSomeRegisters(regnamePC, regnameCX) if err == nil { err = err1 } }() _, _, err = t.p.conn.step(t.strID, nil) if err != nil { if err == threadBlockedError { t.regs.tls = 0 t.regs.gaddr = 0 t.regs.hasgaddr = true return nil } return err } if err := t.readSomeRegisters(regnamePC, regnameCX); err != nil { return err } t.regs.gaddr = t.regs.CX() t.regs.hasgaddr = true return err } // reloadGAlloc makes the specified thread execute one instruction stored at // t.p.loadGInstrAddr then restores the value of the thread's registers. // t.p.loadGInstrAddr must point to valid memory on the inferior, containing // a MOV instruction that loads the address of the current G in the RCX // register. func (t *Thread) reloadGAlloc() error { if t.Blocked() { t.regs.tls = 0 t.regs.gaddr = 0 t.regs.hasgaddr = true return nil } cx := t.regs.CX() pc := t.regs.PC() t.regs.setPC(t.p.loadGInstrAddr) if err := t.writeSomeRegisters(regnamePC); err != nil { return err } var err error defer func() { t.regs.setPC(pc) t.regs.setCX(cx) err1 := t.writeSomeRegisters(regnamePC, regnameCX) if err == nil { err = err1 } }() _, _, err = t.p.conn.step(t.strID, nil) if err != nil { if err == threadBlockedError { t.regs.tls = 0 t.regs.gaddr = 0 t.regs.hasgaddr = true return nil } return err } if err := t.readSomeRegisters(regnameCX); err != nil { return err } t.regs.gaddr = t.regs.CX() t.regs.hasgaddr = true return err } func (t *Thread) clearBreakpointState() { t.setbp = false t.CurrentBreakpoint.Clear() } // SetCurrentBreakpoint will find and set the threads current breakpoint. func (thread *Thread) SetCurrentBreakpoint() error { thread.clearBreakpointState() regs, err := thread.Registers(false) if err != nil { return err } pc := regs.PC() if bp, ok := thread.p.FindBreakpoint(pc); ok { if thread.regs.PC() != bp.Addr { if err := thread.SetPC(bp.Addr); err != nil { return err } } thread.CurrentBreakpoint = bp.CheckCondition(thread) if thread.CurrentBreakpoint.Breakpoint != nil && thread.CurrentBreakpoint.Active { if g, err := proc.GetG(thread); err == nil { thread.CurrentBreakpoint.HitCount[g.ID]++ } thread.CurrentBreakpoint.TotalHitCount++ } } return nil } func (regs *gdbRegisters) PC() uint64 { return binary.LittleEndian.Uint64(regs.regs[regnamePC].value) } func (regs *gdbRegisters) setPC(value uint64) { binary.LittleEndian.PutUint64(regs.regs[regnamePC].value, value) } func (regs *gdbRegisters) SP() uint64 { return binary.LittleEndian.Uint64(regs.regs[regnameSP].value) } func (regs *gdbRegisters) setSP(value uint64) { binary.LittleEndian.PutUint64(regs.regs[regnameSP].value, value) } func (regs *gdbRegisters) setDX(value uint64) { binary.LittleEndian.PutUint64(regs.regs[regnameDX].value, value) } func (regs *gdbRegisters) BP() uint64 { return binary.LittleEndian.Uint64(regs.regs[regnameBP].value) } func (regs *gdbRegisters) CX() uint64 { return binary.LittleEndian.Uint64(regs.regs[regnameCX].value) } func (regs *gdbRegisters) setCX(value uint64) { binary.LittleEndian.PutUint64(regs.regs[regnameCX].value, value) } func (regs *gdbRegisters) TLS() uint64 { return regs.tls } func (regs *gdbRegisters) GAddr() (uint64, bool) { return regs.gaddr, regs.hasgaddr } func (regs *gdbRegisters) byName(name string) uint64 { reg, ok := regs.regs[name] if !ok { return 0 } return binary.LittleEndian.Uint64(reg.value) } func (regs *gdbRegisters) Get(n int) (uint64, error) { reg := x86asm.Reg(n) const ( mask8 = 0x000f mask16 = 0x00ff mask32 = 0xffff ) switch reg { // 8-bit case x86asm.AL: return regs.byName("rax") & mask8, nil case x86asm.CL: return regs.byName("rcx") & mask8, nil case x86asm.DL: return regs.byName("rdx") & mask8, nil case x86asm.BL: return regs.byName("rbx") & mask8, nil case x86asm.AH: return (regs.byName("rax") >> 8) & mask8, nil case x86asm.CH: return (regs.byName("rcx") >> 8) & mask8, nil case x86asm.DH: return (regs.byName("rdx") >> 8) & mask8, nil case x86asm.BH: return (regs.byName("rbx") >> 8) & mask8, nil case x86asm.SPB: return regs.byName("rsp") & mask8, nil case x86asm.BPB: return regs.byName("rbp") & mask8, nil case x86asm.SIB: return regs.byName("rsi") & mask8, nil case x86asm.DIB: return regs.byName("rdi") & mask8, nil case x86asm.R8B: return regs.byName("r8") & mask8, nil case x86asm.R9B: return regs.byName("r9") & mask8, nil case x86asm.R10B: return regs.byName("r10") & mask8, nil case x86asm.R11B: return regs.byName("r11") & mask8, nil case x86asm.R12B: return regs.byName("r12") & mask8, nil case x86asm.R13B: return regs.byName("r13") & mask8, nil case x86asm.R14B: return regs.byName("r14") & mask8, nil case x86asm.R15B: return regs.byName("r15") & mask8, nil // 16-bit case x86asm.AX: return regs.byName("rax") & mask16, nil case x86asm.CX: return regs.byName("rcx") & mask16, nil case x86asm.DX: return regs.byName("rdx") & mask16, nil case x86asm.BX: return regs.byName("rbx") & mask16, nil case x86asm.SP: return regs.byName("rsp") & mask16, nil case x86asm.BP: return regs.byName("rbp") & mask16, nil case x86asm.SI: return regs.byName("rsi") & mask16, nil case x86asm.DI: return regs.byName("rdi") & mask16, nil case x86asm.R8W: return regs.byName("r8") & mask16, nil case x86asm.R9W: return regs.byName("r9") & mask16, nil case x86asm.R10W: return regs.byName("r10") & mask16, nil case x86asm.R11W: return regs.byName("r11") & mask16, nil case x86asm.R12W: return regs.byName("r12") & mask16, nil case x86asm.R13W: return regs.byName("r13") & mask16, nil case x86asm.R14W: return regs.byName("r14") & mask16, nil case x86asm.R15W: return regs.byName("r15") & mask16, nil // 32-bit case x86asm.EAX: return regs.byName("rax") & mask32, nil case x86asm.ECX: return regs.byName("rcx") & mask32, nil case x86asm.EDX: return regs.byName("rdx") & mask32, nil case x86asm.EBX: return regs.byName("rbx") & mask32, nil case x86asm.ESP: return regs.byName("rsp") & mask32, nil case x86asm.EBP: return regs.byName("rbp") & mask32, nil case x86asm.ESI: return regs.byName("rsi") & mask32, nil case x86asm.EDI: return regs.byName("rdi") & mask32, nil case x86asm.R8L: return regs.byName("r8") & mask32, nil case x86asm.R9L: return regs.byName("r9") & mask32, nil case x86asm.R10L: return regs.byName("r10") & mask32, nil case x86asm.R11L: return regs.byName("r11") & mask32, nil case x86asm.R12L: return regs.byName("r12") & mask32, nil case x86asm.R13L: return regs.byName("r13") & mask32, nil case x86asm.R14L: return regs.byName("r14") & mask32, nil case x86asm.R15L: return regs.byName("r15") & mask32, nil // 64-bit case x86asm.RAX: return regs.byName("rax"), nil case x86asm.RCX: return regs.byName("rcx"), nil case x86asm.RDX: return regs.byName("rdx"), nil case x86asm.RBX: return regs.byName("rbx"), nil case x86asm.RSP: return regs.byName("rsp"), nil case x86asm.RBP: return regs.byName("rbp"), nil case x86asm.RSI: return regs.byName("rsi"), nil case x86asm.RDI: return regs.byName("rdi"), nil case x86asm.R8: return regs.byName("r8"), nil case x86asm.R9: return regs.byName("r9"), nil case x86asm.R10: return regs.byName("r10"), nil case x86asm.R11: return regs.byName("r11"), nil case x86asm.R12: return regs.byName("r12"), nil case x86asm.R13: return regs.byName("r13"), nil case x86asm.R14: return regs.byName("r14"), nil case x86asm.R15: return regs.byName("r15"), nil } return 0, proc.ErrUnknownRegister } // SetPC will set the value of the PC register to the given value. func (t *Thread) SetPC(pc uint64) error { t.regs.setPC(pc) if t.p.gcmdok { return t.p.conn.writeRegisters(t.strID, t.regs.buf) } reg := t.regs.regs[regnamePC] return t.p.conn.writeRegister(t.strID, reg.regnum, reg.value) } // SetSP will set the value of the SP register to the given value. func (t *Thread) SetSP(sp uint64) error { t.regs.setSP(sp) if t.p.gcmdok { return t.p.conn.writeRegisters(t.strID, t.regs.buf) } reg := t.regs.regs[regnameSP] return t.p.conn.writeRegister(t.strID, reg.regnum, reg.value) } // SetDX will set the value of the DX register to the given value. func (t *Thread) SetDX(dx uint64) error { t.regs.setDX(dx) if t.p.gcmdok { return t.p.conn.writeRegisters(t.strID, t.regs.buf) } reg := t.regs.regs[regnameDX] return t.p.conn.writeRegister(t.strID, reg.regnum, reg.value) } func (regs *gdbRegisters) Slice() []proc.Register { r := make([]proc.Register, 0, len(regs.regsInfo)) for _, reginfo := range regs.regsInfo { switch { case reginfo.Name == "eflags": r = proc.AppendEflagReg(r, reginfo.Name, uint64(binary.LittleEndian.Uint32(regs.regs[reginfo.Name].value))) case reginfo.Name == "mxcsr": r = proc.AppendMxcsrReg(r, reginfo.Name, uint64(binary.LittleEndian.Uint32(regs.regs[reginfo.Name].value))) case reginfo.Bitsize == 16: r = proc.AppendWordReg(r, reginfo.Name, binary.LittleEndian.Uint16(regs.regs[reginfo.Name].value)) case reginfo.Bitsize == 32: r = proc.AppendDwordReg(r, reginfo.Name, binary.LittleEndian.Uint32(regs.regs[reginfo.Name].value)) case reginfo.Bitsize == 64: r = proc.AppendQwordReg(r, reginfo.Name, binary.LittleEndian.Uint64(regs.regs[reginfo.Name].value)) case reginfo.Bitsize == 80: idx := 0 for _, stprefix := range []string{"stmm", "st"} { if strings.HasPrefix(reginfo.Name, stprefix) { idx, _ = strconv.Atoi(reginfo.Name[len(stprefix):]) break } } value := regs.regs[reginfo.Name].value r = proc.AppendX87Reg(r, idx, binary.LittleEndian.Uint16(value[8:]), binary.LittleEndian.Uint64(value[:8])) case reginfo.Bitsize == 128: r = proc.AppendSSEReg(r, strings.ToUpper(reginfo.Name), regs.regs[reginfo.Name].value) case reginfo.Bitsize == 256: if !strings.HasPrefix(strings.ToLower(reginfo.Name), "ymm") { continue } value := regs.regs[reginfo.Name].value xmmName := "x" + reginfo.Name[1:] r = proc.AppendSSEReg(r, strings.ToUpper(xmmName), value[:16]) r = proc.AppendSSEReg(r, strings.ToUpper(reginfo.Name), value[16:]) } } return r } func (regs *gdbRegisters) Copy() proc.Registers { savedRegs := &gdbRegisters{} savedRegs.init(regs.regsInfo) copy(savedRegs.buf, regs.buf) return savedRegs }