package linutil import ( "bytes" "encoding/binary" "fmt" "golang.org/x/arch/x86/x86asm" "github.com/go-delve/delve/pkg/proc" ) // AMD64Registers implements the proc.Registers interface for the native/linux // backend and core/linux backends, on AMD64. type AMD64Registers struct { Regs *AMD64PtraceRegs Fpregs []proc.Register Fpregset *AMD64Xstate } // AMD64PtraceRegs is the struct used by the linux kernel to return the // general purpose registers for AMD64 CPUs. type AMD64PtraceRegs struct { R15 uint64 R14 uint64 R13 uint64 R12 uint64 Rbp uint64 Rbx uint64 R11 uint64 R10 uint64 R9 uint64 R8 uint64 Rax uint64 Rcx uint64 Rdx uint64 Rsi uint64 Rdi uint64 Orig_rax uint64 Rip uint64 Cs uint64 Eflags uint64 Rsp uint64 Ss uint64 Fs_base uint64 Gs_base uint64 Ds uint64 Es uint64 Fs uint64 Gs uint64 } // Slice returns the registers as a list of (name, value) pairs. func (r *AMD64Registers) Slice(floatingPoint bool) []proc.Register { var regs = []struct { k string v uint64 }{ {"Rip", r.Regs.Rip}, {"Rsp", r.Regs.Rsp}, {"Rax", r.Regs.Rax}, {"Rbx", r.Regs.Rbx}, {"Rcx", r.Regs.Rcx}, {"Rdx", r.Regs.Rdx}, {"Rdi", r.Regs.Rdi}, {"Rsi", r.Regs.Rsi}, {"Rbp", r.Regs.Rbp}, {"R8", r.Regs.R8}, {"R9", r.Regs.R9}, {"R10", r.Regs.R10}, {"R11", r.Regs.R11}, {"R12", r.Regs.R12}, {"R13", r.Regs.R13}, {"R14", r.Regs.R14}, {"R15", r.Regs.R15}, {"Orig_rax", r.Regs.Orig_rax}, {"Cs", r.Regs.Cs}, {"Eflags", r.Regs.Eflags}, {"Ss", r.Regs.Ss}, {"Fs_base", r.Regs.Fs_base}, {"Gs_base", r.Regs.Gs_base}, {"Ds", r.Regs.Ds}, {"Es", r.Regs.Es}, {"Fs", r.Regs.Fs}, {"Gs", r.Regs.Gs}, } out := make([]proc.Register, 0, len(regs)+len(r.Fpregs)) for _, reg := range regs { if reg.k == "Eflags" { out = proc.AppendEflagReg(out, reg.k, reg.v) } else { out = proc.AppendQwordReg(out, reg.k, reg.v) } } if floatingPoint { out = append(out, r.Fpregs...) } return out } // PC returns the value of RIP register. func (r *AMD64Registers) PC() uint64 { return r.Regs.Rip } // SP returns the value of RSP register. func (r *AMD64Registers) SP() uint64 { return r.Regs.Rsp } func (r *AMD64Registers) BP() uint64 { return r.Regs.Rbp } // CX returns the value of RCX register. func (r *AMD64Registers) CX() uint64 { return r.Regs.Rcx } // TLS returns the address of the thread local storage memory segment. func (r *AMD64Registers) TLS() uint64 { return r.Regs.Fs_base } // GAddr returns the address of the G variable if it is known, 0 and false // otherwise. func (r *AMD64Registers) GAddr() (uint64, bool) { return 0, false } // Get returns the value of the n-th register (in x86asm order). func (r *AMD64Registers) Get(n int) (uint64, error) { reg := x86asm.Reg(n) const ( mask8 = 0x000f mask16 = 0x00ff mask32 = 0xffff ) switch reg { // 8-bit case x86asm.AL: return r.Regs.Rax & mask8, nil case x86asm.CL: return r.Regs.Rcx & mask8, nil case x86asm.DL: return r.Regs.Rdx & mask8, nil case x86asm.BL: return r.Regs.Rbx & mask8, nil case x86asm.AH: return (r.Regs.Rax >> 8) & mask8, nil case x86asm.CH: return (r.Regs.Rcx >> 8) & mask8, nil case x86asm.DH: return (r.Regs.Rdx >> 8) & mask8, nil case x86asm.BH: return (r.Regs.Rbx >> 8) & mask8, nil case x86asm.SPB: return r.Regs.Rsp & mask8, nil case x86asm.BPB: return r.Regs.Rbp & mask8, nil case x86asm.SIB: return r.Regs.Rsi & mask8, nil case x86asm.DIB: return r.Regs.Rdi & mask8, nil case x86asm.R8B: return r.Regs.R8 & mask8, nil case x86asm.R9B: return r.Regs.R9 & mask8, nil case x86asm.R10B: return r.Regs.R10 & mask8, nil case x86asm.R11B: return r.Regs.R11 & mask8, nil case x86asm.R12B: return r.Regs.R12 & mask8, nil case x86asm.R13B: return r.Regs.R13 & mask8, nil case x86asm.R14B: return r.Regs.R14 & mask8, nil case x86asm.R15B: return r.Regs.R15 & mask8, nil // 16-bit case x86asm.AX: return r.Regs.Rax & mask16, nil case x86asm.CX: return r.Regs.Rcx & mask16, nil case x86asm.DX: return r.Regs.Rdx & mask16, nil case x86asm.BX: return r.Regs.Rbx & mask16, nil case x86asm.SP: return r.Regs.Rsp & mask16, nil case x86asm.BP: return r.Regs.Rbp & mask16, nil case x86asm.SI: return r.Regs.Rsi & mask16, nil case x86asm.DI: return r.Regs.Rdi & mask16, nil case x86asm.R8W: return r.Regs.R8 & mask16, nil case x86asm.R9W: return r.Regs.R9 & mask16, nil case x86asm.R10W: return r.Regs.R10 & mask16, nil case x86asm.R11W: return r.Regs.R11 & mask16, nil case x86asm.R12W: return r.Regs.R12 & mask16, nil case x86asm.R13W: return r.Regs.R13 & mask16, nil case x86asm.R14W: return r.Regs.R14 & mask16, nil case x86asm.R15W: return r.Regs.R15 & mask16, nil // 32-bit case x86asm.EAX: return r.Regs.Rax & mask32, nil case x86asm.ECX: return r.Regs.Rcx & mask32, nil case x86asm.EDX: return r.Regs.Rdx & mask32, nil case x86asm.EBX: return r.Regs.Rbx & mask32, nil case x86asm.ESP: return r.Regs.Rsp & mask32, nil case x86asm.EBP: return r.Regs.Rbp & mask32, nil case x86asm.ESI: return r.Regs.Rsi & mask32, nil case x86asm.EDI: return r.Regs.Rdi & mask32, nil case x86asm.R8L: return r.Regs.R8 & mask32, nil case x86asm.R9L: return r.Regs.R9 & mask32, nil case x86asm.R10L: return r.Regs.R10 & mask32, nil case x86asm.R11L: return r.Regs.R11 & mask32, nil case x86asm.R12L: return r.Regs.R12 & mask32, nil case x86asm.R13L: return r.Regs.R13 & mask32, nil case x86asm.R14L: return r.Regs.R14 & mask32, nil case x86asm.R15L: return r.Regs.R15 & mask32, nil // 64-bit case x86asm.RAX: return r.Regs.Rax, nil case x86asm.RCX: return r.Regs.Rcx, nil case x86asm.RDX: return r.Regs.Rdx, nil case x86asm.RBX: return r.Regs.Rbx, nil case x86asm.RSP: return r.Regs.Rsp, nil case x86asm.RBP: return r.Regs.Rbp, nil case x86asm.RSI: return r.Regs.Rsi, nil case x86asm.RDI: return r.Regs.Rdi, nil case x86asm.R8: return r.Regs.R8, nil case x86asm.R9: return r.Regs.R9, nil case x86asm.R10: return r.Regs.R10, nil case x86asm.R11: return r.Regs.R11, nil case x86asm.R12: return r.Regs.R12, nil case x86asm.R13: return r.Regs.R13, nil case x86asm.R14: return r.Regs.R14, nil case x86asm.R15: return r.Regs.R15, nil } return 0, proc.ErrUnknownRegister } // Copy returns a copy of these registers that is guarenteed not to change. func (r *AMD64Registers) Copy() proc.Registers { var rr AMD64Registers rr.Regs = &AMD64PtraceRegs{} rr.Fpregset = &AMD64Xstate{} *(rr.Regs) = *(r.Regs) if r.Fpregset != nil { *(rr.Fpregset) = *(r.Fpregset) } if r.Fpregs != nil { rr.Fpregs = make([]proc.Register, len(r.Fpregs)) copy(rr.Fpregs, r.Fpregs) } return &rr } // AMD64PtraceFpRegs tracks user_fpregs_struct in /usr/include/x86_64-linux-gnu/sys/user.h type AMD64PtraceFpRegs struct { Cwd uint16 Swd uint16 Ftw uint16 Fop uint16 Rip uint64 Rdp uint64 Mxcsr uint32 MxcrMask uint32 StSpace [32]uint32 XmmSpace [256]byte Padding [24]uint32 } // AMD64Xstate represents amd64 XSAVE area. See Section 13.1 (and // following) of Intel® 64 and IA-32 Architectures Software Developer’s // Manual, Volume 1: Basic Architecture. type AMD64Xstate struct { AMD64PtraceFpRegs Xsave []byte // raw xsave area AvxState bool // contains AVX state YmmSpace [256]byte } // Decode decodes an XSAVE area to a list of name/value pairs of registers. func (xsave *AMD64Xstate) Decode() (regs []proc.Register) { // x87 registers regs = proc.AppendWordReg(regs, "CW", xsave.Cwd) regs = proc.AppendWordReg(regs, "SW", xsave.Swd) regs = proc.AppendWordReg(regs, "TW", xsave.Ftw) regs = proc.AppendWordReg(regs, "FOP", xsave.Fop) regs = proc.AppendQwordReg(regs, "FIP", xsave.Rip) regs = proc.AppendQwordReg(regs, "FDP", xsave.Rdp) for i := 0; i < len(xsave.StSpace); i += 4 { regs = proc.AppendX87Reg(regs, i/4, uint16(xsave.StSpace[i+2]), uint64(xsave.StSpace[i+1])<<32|uint64(xsave.StSpace[i])) } // SSE registers regs = proc.AppendMxcsrReg(regs, "MXCSR", uint64(xsave.Mxcsr)) regs = proc.AppendDwordReg(regs, "MXCSR_MASK", xsave.MxcrMask) for i := 0; i < len(xsave.XmmSpace); i += 16 { regs = proc.AppendSSEReg(regs, fmt.Sprintf("XMM%d", i/16), xsave.XmmSpace[i:i+16]) if xsave.AvxState { regs = proc.AppendSSEReg(regs, fmt.Sprintf("YMM%d", i/16), xsave.YmmSpace[i:i+16]) } } return } const ( _XSAVE_HEADER_START = 512 _XSAVE_HEADER_LEN = 64 _XSAVE_EXTENDED_REGION_START = 576 _XSAVE_SSE_REGION_LEN = 416 ) // LinuxX86XstateRead reads a byte array containing an XSAVE area into regset. // If readLegacy is true regset.PtraceFpRegs will be filled with the // contents of the legacy region of the XSAVE area. // See Section 13.1 (and following) of Intel® 64 and IA-32 Architectures // Software Developer’s Manual, Volume 1: Basic Architecture. func AMD64XstateRead(xstateargs []byte, readLegacy bool, regset *AMD64Xstate) error { if _XSAVE_HEADER_START+_XSAVE_HEADER_LEN >= len(xstateargs) { return nil } if readLegacy { rdr := bytes.NewReader(xstateargs[:_XSAVE_HEADER_START]) if err := binary.Read(rdr, binary.LittleEndian, ®set.AMD64PtraceFpRegs); err != nil { return err } } xsaveheader := xstateargs[_XSAVE_HEADER_START : _XSAVE_HEADER_START+_XSAVE_HEADER_LEN] xstate_bv := binary.LittleEndian.Uint64(xsaveheader[0:8]) xcomp_bv := binary.LittleEndian.Uint64(xsaveheader[8:16]) if xcomp_bv&(1<<63) != 0 { // compact format not supported return nil } if xstate_bv&(1<<2) == 0 { // AVX state not present return nil } avxstate := xstateargs[_XSAVE_EXTENDED_REGION_START:] regset.AvxState = true copy(regset.YmmSpace[:], avxstate[:len(regset.YmmSpace)]) return nil }