1
0
mirror of https://github.com/beego/bee.git synced 2024-11-14 17:00:54 +00:00
bee/vendor/github.com/derekparker/delve/pkg/proc/threads.go
2017-03-19 23:48:59 +01:00

511 lines
14 KiB
Go

package proc
import (
"debug/gosym"
"encoding/binary"
"errors"
"fmt"
"go/ast"
"path/filepath"
"reflect"
"runtime"
"strings"
"golang.org/x/debug/dwarf"
)
// Thread represents a single thread in the traced process
// ID represents the thread id or port, Process holds a reference to the
// Process struct that contains info on the process as
// a whole, and Status represents the last result of a `wait` call
// on this thread.
type Thread struct {
ID int // Thread ID or mach port
Status *WaitStatus // Status returned from last wait call
CurrentBreakpoint *Breakpoint // Breakpoint thread is currently stopped at
BreakpointConditionMet bool // Output of evaluating the breakpoint's condition
BreakpointConditionError error // Error evaluating the breakpoint's condition
dbp *Process
singleStepping bool
running bool
os *OSSpecificDetails
}
// Location represents the location of a thread.
// Holds information on the current instruction
// address, the source file:line, and the function.
type Location struct {
PC uint64
File string
Line int
Fn *gosym.Func
}
// Continue the execution of this thread.
//
// If we are currently at a breakpoint, we'll clear it
// first and then resume execution. Thread will continue until
// it hits a breakpoint or is signaled.
func (thread *Thread) Continue() error {
pc, err := thread.PC()
if err != nil {
return err
}
// Check whether we are stopped at a breakpoint, and
// if so, single step over it before continuing.
if _, ok := thread.dbp.FindBreakpoint(pc); ok {
if err := thread.StepInstruction(); err != nil {
return err
}
}
return thread.resume()
}
// StepInstruction steps a single instruction.
//
// Executes exactly one instruction and then returns.
// If the thread is at a breakpoint, we first clear it,
// execute the instruction, and then replace the breakpoint.
// Otherwise we simply execute the next instruction.
func (thread *Thread) StepInstruction() (err error) {
thread.running = true
thread.singleStepping = true
defer func() {
thread.singleStepping = false
thread.running = false
}()
pc, err := thread.PC()
if err != nil {
return err
}
bp, ok := thread.dbp.FindBreakpoint(pc)
if ok {
// Clear the breakpoint so that we can continue execution.
_, err = bp.Clear(thread)
if err != nil {
return err
}
// Restore breakpoint now that we have passed it.
defer func() {
err = thread.dbp.writeSoftwareBreakpoint(thread, bp.Addr)
}()
}
err = thread.singleStep()
if err != nil {
if _, exited := err.(ProcessExitedError); exited {
return err
}
return fmt.Errorf("step failed: %s", err.Error())
}
return nil
}
// Location returns the threads location, including the file:line
// of the corresponding source code, the function we're in
// and the current instruction address.
func (thread *Thread) Location() (*Location, error) {
pc, err := thread.PC()
if err != nil {
return nil, err
}
f, l, fn := thread.dbp.PCToLine(pc)
return &Location{PC: pc, File: f, Line: l, Fn: fn}, nil
}
// ThreadBlockedError is returned when the thread
// is blocked in the scheduler.
type ThreadBlockedError struct{}
func (tbe ThreadBlockedError) Error() string {
return ""
}
// returns topmost frame of g or thread if g is nil
func topframe(g *G, thread *Thread) (Stackframe, error) {
var frames []Stackframe
var err error
if g == nil {
if thread.blocked() {
return Stackframe{}, ThreadBlockedError{}
}
frames, err = thread.Stacktrace(0)
} else {
frames, err = g.Stacktrace(0)
}
if err != nil {
return Stackframe{}, err
}
if len(frames) < 1 {
return Stackframe{}, errors.New("empty stack trace")
}
return frames[0], nil
}
// Set breakpoints at every line, and the return address. Also look for
// a deferred function and set a breakpoint there too.
// If stepInto is true it will also set breakpoints inside all
// functions called on the current source line, for non-absolute CALLs
// a breakpoint of kind StepBreakpoint is set on the CALL instruction,
// Continue will take care of setting a breakpoint to the destination
// once the CALL is reached.
func (dbp *Process) next(stepInto bool) error {
topframe, err := topframe(dbp.selectedGoroutine, dbp.currentThread)
if err != nil {
return err
}
success := false
defer func() {
if !success {
dbp.ClearInternalBreakpoints()
}
}()
csource := filepath.Ext(topframe.Current.File) != ".go"
thread := dbp.currentThread
currentGoroutine := false
if dbp.selectedGoroutine != nil && dbp.selectedGoroutine.thread != nil {
thread = dbp.selectedGoroutine.thread
currentGoroutine = true
}
text, err := thread.Disassemble(topframe.FDE.Begin(), topframe.FDE.End(), currentGoroutine)
if err != nil && stepInto {
return err
}
cond := sameGoroutineCondition(dbp.selectedGoroutine)
if stepInto {
for _, instr := range text {
if instr.Loc.File != topframe.Current.File || instr.Loc.Line != topframe.Current.Line || !instr.IsCall() {
continue
}
if instr.DestLoc != nil && instr.DestLoc.Fn != nil {
if err := dbp.setStepIntoBreakpoint([]AsmInstruction{instr}, cond); err != nil {
return err
}
} else {
// Non-absolute call instruction, set a StepBreakpoint here
if _, err := dbp.SetBreakpoint(instr.Loc.PC, StepBreakpoint, cond); err != nil {
if _, ok := err.(BreakpointExistsError); !ok {
return err
}
}
}
}
}
if !csource {
deferreturns := []uint64{}
// Find all runtime.deferreturn locations in the function
// See documentation of Breakpoint.DeferCond for why this is necessary
for _, instr := range text {
if instr.IsCall() && instr.DestLoc != nil && instr.DestLoc.Fn != nil && instr.DestLoc.Fn.Name == "runtime.deferreturn" {
deferreturns = append(deferreturns, instr.Loc.PC)
}
}
// Set breakpoint on the most recently deferred function (if any)
var deferpc uint64 = 0
if dbp.selectedGoroutine != nil {
deferPCEntry := dbp.selectedGoroutine.DeferPC()
if deferPCEntry != 0 {
_, _, deferfn := dbp.goSymTable.PCToLine(deferPCEntry)
var err error
deferpc, err = dbp.FirstPCAfterPrologue(deferfn, false)
if err != nil {
return err
}
}
}
if deferpc != 0 && deferpc != topframe.Current.PC {
bp, err := dbp.SetBreakpoint(deferpc, NextDeferBreakpoint, cond)
if err != nil {
if _, ok := err.(BreakpointExistsError); !ok {
return err
}
}
if bp != nil {
bp.DeferReturns = deferreturns
}
}
}
// Add breakpoints on all the lines in the current function
pcs, err := dbp.lineInfo.AllPCsBetween(topframe.FDE.Begin(), topframe.FDE.End()-1, topframe.Current.File)
if err != nil {
return err
}
if !csource {
var covered bool
for i := range pcs {
if topframe.FDE.Cover(pcs[i]) {
covered = true
break
}
}
if !covered {
fn := dbp.goSymTable.PCToFunc(topframe.Ret)
if dbp.selectedGoroutine != nil && fn != nil && fn.Name == "runtime.goexit" {
return nil
}
}
}
// Add a breakpoint on the return address for the current frame
pcs = append(pcs, topframe.Ret)
success = true
return dbp.setInternalBreakpoints(topframe.Current.PC, pcs, NextBreakpoint, cond)
}
func (dbp *Process) setStepIntoBreakpoint(text []AsmInstruction, cond ast.Expr) error {
if len(text) <= 0 {
return nil
}
instr := text[0]
if instr.DestLoc == nil || instr.DestLoc.Fn == nil {
return nil
}
fn := instr.DestLoc.Fn
// Ensure PC and Entry match, otherwise StepInto is likely to set
// its breakpoint before DestLoc.PC and hence run too far ahead.
// Calls to runtime.duffzero and duffcopy have this problem.
if fn.Entry != instr.DestLoc.PC {
return nil
}
// Skip unexported runtime functions
if strings.HasPrefix(fn.Name, "runtime.") && !isExportedRuntime(fn.Name) {
return nil
}
//TODO(aarzilli): if we want to let users hide functions
// or entire packages from being stepped into with 'step'
// those extra checks should be done here.
// Set a breakpoint after the function's prologue
pc, _ := dbp.FirstPCAfterPrologue(fn, false)
if _, err := dbp.SetBreakpoint(pc, NextBreakpoint, cond); err != nil {
if _, ok := err.(BreakpointExistsError); !ok {
return err
}
}
return nil
}
// setInternalBreakpoints sets a breakpoint to all addresses specified in pcs
// skipping over curpc and curpc-1
func (dbp *Process) setInternalBreakpoints(curpc uint64, pcs []uint64, kind BreakpointKind, cond ast.Expr) error {
for i := range pcs {
if pcs[i] == curpc || pcs[i] == curpc-1 {
continue
}
if _, err := dbp.SetBreakpoint(pcs[i], kind, cond); err != nil {
if _, ok := err.(BreakpointExistsError); !ok {
dbp.ClearInternalBreakpoints()
return err
}
}
}
return nil
}
// SetPC sets the PC for this thread.
func (thread *Thread) SetPC(pc uint64) error {
regs, err := thread.Registers(false)
if err != nil {
return err
}
return regs.SetPC(thread, pc)
}
func (thread *Thread) getGVariable() (*Variable, error) {
regs, err := thread.Registers(false)
if err != nil {
return nil, err
}
if thread.dbp.arch.GStructOffset() == 0 {
// GetG was called through SwitchThread / updateThreadList during initialization
// thread.dbp.arch isn't setup yet (it needs a current thread to read global variables from)
return nil, fmt.Errorf("g struct offset not initialized")
}
gaddrbs, err := thread.readMemory(uintptr(regs.TLS()+thread.dbp.arch.GStructOffset()), thread.dbp.arch.PtrSize())
if err != nil {
return nil, err
}
gaddr := uintptr(binary.LittleEndian.Uint64(gaddrbs))
// On Windows, the value at TLS()+GStructOffset() is a
// pointer to the G struct.
needsDeref := runtime.GOOS == "windows"
return thread.newGVariable(gaddr, needsDeref)
}
func (thread *Thread) newGVariable(gaddr uintptr, deref bool) (*Variable, error) {
typ, err := thread.dbp.findType("runtime.g")
if err != nil {
return nil, err
}
name := ""
if deref {
typ = &dwarf.PtrType{dwarf.CommonType{int64(thread.dbp.arch.PtrSize()), "", reflect.Ptr, 0}, typ}
} else {
name = "runtime.curg"
}
return thread.newVariable(name, gaddr, typ), nil
}
// GetG returns information on the G (goroutine) that is executing on this thread.
//
// The G structure for a thread is stored in thread local storage. Here we simply
// calculate the address and read and parse the G struct.
//
// We cannot simply use the allg linked list in order to find the M that represents
// the given OS thread and follow its G pointer because on Darwin mach ports are not
// universal, so our port for this thread would not map to the `id` attribute of the M
// structure. Also, when linked against libc, Go prefers the libc version of clone as
// opposed to the runtime version. This has the consequence of not setting M.id for
// any thread, regardless of OS.
//
// In order to get around all this craziness, we read the address of the G structure for
// the current thread from the thread local storage area.
func (thread *Thread) GetG() (g *G, err error) {
gaddr, err := thread.getGVariable()
if err != nil {
return nil, err
}
g, err = gaddr.parseG()
if err == nil {
g.thread = thread
if loc, err := thread.Location(); err == nil {
g.CurrentLoc = *loc
}
}
return
}
// Stopped returns whether the thread is stopped at
// the operating system level. Actual implementation
// is OS dependant, look in OS thread file.
func (thread *Thread) Stopped() bool {
return thread.stopped()
}
// Halt stops this thread from executing. Actual
// implementation is OS dependant. Look in OS
// thread file.
func (thread *Thread) Halt() (err error) {
defer func() {
if err == nil {
thread.running = false
}
}()
if thread.Stopped() {
return
}
err = thread.halt()
return
}
// Scope returns the current EvalScope for this thread.
func (thread *Thread) Scope() (*EvalScope, error) {
locations, err := thread.Stacktrace(0)
if err != nil {
return nil, err
}
if len(locations) < 1 {
return nil, errors.New("could not decode first frame")
}
return locations[0].Scope(thread), nil
}
// SetCurrentBreakpoint sets the current breakpoint that this
// thread is stopped at as CurrentBreakpoint on the thread struct.
func (thread *Thread) SetCurrentBreakpoint() error {
thread.CurrentBreakpoint = nil
pc, err := thread.PC()
if err != nil {
return err
}
if bp, ok := thread.dbp.FindBreakpoint(pc); ok {
thread.CurrentBreakpoint = bp
if err = thread.SetPC(bp.Addr); err != nil {
return err
}
thread.BreakpointConditionMet, thread.BreakpointConditionError = bp.checkCondition(thread)
if thread.onTriggeredBreakpoint() {
if g, err := thread.GetG(); err == nil {
thread.CurrentBreakpoint.HitCount[g.ID]++
}
thread.CurrentBreakpoint.TotalHitCount++
}
}
return nil
}
func (thread *Thread) clearBreakpointState() {
thread.CurrentBreakpoint = nil
thread.BreakpointConditionMet = false
thread.BreakpointConditionError = nil
}
func (thread *Thread) onTriggeredBreakpoint() bool {
return (thread.CurrentBreakpoint != nil) && thread.BreakpointConditionMet
}
func (thread *Thread) onTriggeredInternalBreakpoint() bool {
return thread.onTriggeredBreakpoint() && thread.CurrentBreakpoint.Internal()
}
func (thread *Thread) onRuntimeBreakpoint() bool {
loc, err := thread.Location()
if err != nil {
return false
}
return loc.Fn != nil && loc.Fn.Name == "runtime.breakpoint"
}
// onNextGorutine returns true if this thread is on the goroutine requested by the current 'next' command
func (thread *Thread) onNextGoroutine() (bool, error) {
var bp *Breakpoint
for i := range thread.dbp.breakpoints {
if thread.dbp.breakpoints[i].Internal() {
bp = thread.dbp.breakpoints[i]
break
}
}
if bp == nil {
return false, nil
}
if bp.Kind == NextDeferBreakpoint {
// we just want to check the condition on the goroutine id here
bp.Kind = NextBreakpoint
defer func() {
bp.Kind = NextDeferBreakpoint
}()
}
return bp.checkCondition(thread)
}