1
0
mirror of https://github.com/beego/bee.git synced 2024-11-05 01:40:54 +00:00
bee/vendor/golang.org/x/debug/dwarf/line.go
2017-03-19 23:48:59 +01:00

449 lines
14 KiB
Go

// Copyright 2014 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package dwarf
// This file implements the mapping from PC to lines.
// TODO: Find a way to test this properly.
// http://www.dwarfstd.org/doc/DWARF4.pdf Section 6.2 page 108
import (
"fmt"
"sort"
"strings"
)
// PCToLine returns the file and line number corresponding to the PC value.
// It returns an error if a correspondence cannot be found.
func (d *Data) PCToLine(pc uint64) (file string, line uint64, err error) {
c := d.pcToLineEntries
if len(c) == 0 {
return "", 0, fmt.Errorf("PCToLine: no line table")
}
i := sort.Search(len(c), func(i int) bool { return c[i].pc > pc }) - 1
// c[i] is now the entry in pcToLineEntries with the largest pc that is not
// larger than the query pc.
// The search has failed if:
// - All pcs in c were larger than the query pc (i == -1).
// - c[i] marked the end of a sequence of instructions (c[i].file == 0).
// - c[i] is the last element of c, and isn't the end of a sequence of
// instructions, and the search pc is much larger than c[i].pc. In this
// case, we don't know the range of the last instruction, but the search
// pc is probably past it.
if i == -1 || c[i].file == 0 || (i+1 == len(c) && pc-c[i].pc > 1024) {
return "", 0, fmt.Errorf("no source line defined for PC %#x", pc)
}
if c[i].file >= uint64(len(d.sourceFiles)) {
return "", 0, fmt.Errorf("invalid file number in DWARF data")
}
return d.sourceFiles[c[i].file], c[i].line, nil
}
// LineToBreakpointPCs returns the PCs that should be used as breakpoints
// corresponding to the given file and line number.
// It returns an empty slice if no PCs were found.
func (d *Data) LineToBreakpointPCs(file string, line uint64) ([]uint64, error) {
compDir := d.compilationDirectory()
// Find the closest match in the executable for the specified file.
// We choose the file with the largest number of path components matching
// at the end of the name. If there is a tie, we prefer files that are
// under the compilation directory. If there is still a tie, we choose
// the file with the shortest name.
// TODO: handle duplicate file names in the DWARF?
var bestFile struct {
fileNum uint64 // Index of the file in the DWARF data.
components int // Number of matching path components.
length int // Length of the filename.
underComp bool // File is under the compilation directory.
}
for filenum, filename := range d.sourceFiles {
c := matchingPathComponentSuffixSize(filename, file)
underComp := strings.HasPrefix(filename, compDir)
better := false
if c != bestFile.components {
better = c > bestFile.components
} else if underComp != bestFile.underComp {
better = underComp
} else {
better = len(filename) < bestFile.length
}
if better {
bestFile.fileNum = uint64(filenum)
bestFile.components = c
bestFile.length = len(filename)
bestFile.underComp = underComp
}
}
if bestFile.components == 0 {
return nil, fmt.Errorf("couldn't find file %q", file)
}
c := d.lineToPCEntries[bestFile.fileNum]
// c contains all (pc, line) pairs for the appropriate file.
start := sort.Search(len(c), func(i int) bool { return c[i].line >= line })
end := sort.Search(len(c), func(i int) bool { return c[i].line > line })
// c[i].line == line for all i in the range [start, end).
pcs := make([]uint64, 0, end-start)
for i := start; i < end; i++ {
pcs = append(pcs, c[i].pc)
}
return pcs, nil
}
// compilationDirectory finds the first compilation unit entry in d and returns
// the compilation directory contained in it.
// If it fails, it returns the empty string.
func (d *Data) compilationDirectory() string {
r := d.Reader()
for {
entry, err := r.Next()
if entry == nil || err != nil {
return ""
}
if entry.Tag == TagCompileUnit {
name, _ := entry.Val(AttrCompDir).(string)
return name
}
}
}
// matchingPathComponentSuffixSize returns the largest n such that the last n
// components of the paths p1 and p2 are equal.
// e.g. matchingPathComponentSuffixSize("a/b/x/y.go", "b/a/x/y.go") returns 2.
func matchingPathComponentSuffixSize(p1, p2 string) int {
// TODO: deal with other path separators.
c1 := strings.Split(p1, "/")
c2 := strings.Split(p2, "/")
min := len(c1)
if len(c2) < min {
min = len(c2)
}
var n int
for n = 0; n < min; n++ {
if c1[len(c1)-1-n] != c2[len(c2)-1-n] {
break
}
}
return n
}
// Standard opcodes. Figure 37, page 178.
// If an opcode >= lineMachine.prologue.opcodeBase, it is a special
// opcode rather than the opcode defined in this table.
const (
lineStdCopy = 0x01
lineStdAdvancePC = 0x02
lineStdAdvanceLine = 0x03
lineStdSetFile = 0x04
lineStdSetColumn = 0x05
lineStdNegateStmt = 0x06
lineStdSetBasicBlock = 0x07
lineStdConstAddPC = 0x08
lineStdFixedAdvancePC = 0x09
lineStdSetPrologueEnd = 0x0a
lineStdSetEpilogueBegin = 0x0b
lineStdSetISA = 0x0c
)
// Extended opcodes. Figure 38, page 179.
const (
lineStartExtendedOpcode = 0x00 // Not defined as a named constant in the spec.
lineExtEndSequence = 0x01
lineExtSetAddress = 0x02
lineExtDefineFile = 0x03
lineExtSetDiscriminator = 0x04 // New in version 4.
lineExtLoUser = 0x80
lineExtHiUser = 0xff
)
// lineHeader holds the information stored in the header of the line table for a
// single compilation unit.
// Section 6.2.4, page 112.
type lineHeader struct {
unitLength int
version int
headerLength int
minInstructionLength int
maxOpsPerInstruction int
defaultIsStmt bool
lineBase int
lineRange int
opcodeBase byte
stdOpcodeLengths []byte
include []string // entry 0 is empty; means current directory
file []lineFile // entry 0 is empty.
}
// lineFile represents a file name stored in the PC/line table, usually in the header.
type lineFile struct {
name string
index int // index into include directories
time int // implementation-defined time of last modification
length int // length in bytes, 0 if not available.
}
// lineMachine holds the registers evaluated during executing of the PC/line mapping engine.
// Section 6.2.2, page 109.
type lineMachine struct {
// The program-counter value corresponding to a machine instruction generated by the compiler.
address uint64
// An unsigned integer representing the index of an operation within a VLIW
// instruction. The index of the first operation is 0. For non-VLIW
// architectures, this register will always be 0.
// The address and op_index registers, taken together, form an operation
// pointer that can reference any individual operation with the instruction
// stream.
opIndex uint64
// An unsigned integer indicating the identity of the source file corresponding to a machine instruction.
file uint64
// An unsigned integer indicating a source line number. Lines are numbered
// beginning at 1. The compiler may emit the value 0 in cases where an
// instruction cannot be attributed to any source line.
line uint64
// An unsigned integer indicating a column number within a source line.
// Columns are numbered beginning at 1. The value 0 is reserved to indicate
// that a statement begins at the “left edge” of the line.
column uint64
// A boolean indicating that the current instruction is a recommended
// breakpoint location. A recommended breakpoint location is intended to
// “represent” a line, a statement and/or a semantically distinct subpart of a
// statement.
isStmt bool
// A boolean indicating that the current instruction is the beginning of a basic
// block.
basicBlock bool
// A boolean indicating that the current address is that of the first byte after
// the end of a sequence of target machine instructions. end_sequence
// terminates a sequence of lines; therefore other information in the same
// row is not meaningful.
endSequence bool
// A boolean indicating that the current address is one (of possibly many)
// where execution should be suspended for an entry breakpoint of a
// function.
prologueEnd bool
// A boolean indicating that the current address is one (of possibly many)
// where execution should be suspended for an exit breakpoint of a function.
epilogueBegin bool
// An unsigned integer whose value encodes the applicable instruction set
// architecture for the current instruction.
// The encoding of instruction sets should be shared by all users of a given
// architecture. It is recommended that this encoding be defined by the ABI
// authoring committee for each architecture.
isa uint64
// An unsigned integer identifying the block to which the current instruction
// belongs. Discriminator values are assigned arbitrarily by the DWARF
// producer and serve to distinguish among multiple blocks that may all be
// associated with the same source file, line, and column. Where only one
// block exists for a given source position, the discriminator value should be
// zero.
discriminator uint64
// The header for the current compilation unit.
// Not an actual register, but stored here for cleanliness.
header lineHeader
}
// parseHeader parses the header describing the compilation unit in the line
// table starting at the specified offset.
func (m *lineMachine) parseHeader(b *buf) error {
m.header = lineHeader{}
m.header.unitLength = int(b.uint32()) // Note: We are assuming 32-bit DWARF format.
if m.header.unitLength > len(b.data) {
return fmt.Errorf("DWARF: bad PC/line header length")
}
m.header.version = int(b.uint16())
m.header.headerLength = int(b.uint32())
m.header.minInstructionLength = int(b.uint8())
if m.header.version >= 4 {
m.header.maxOpsPerInstruction = int(b.uint8())
} else {
m.header.maxOpsPerInstruction = 1
}
m.header.defaultIsStmt = b.uint8() != 0
m.header.lineBase = int(int8(b.uint8()))
m.header.lineRange = int(b.uint8())
m.header.opcodeBase = b.uint8()
m.header.stdOpcodeLengths = make([]byte, m.header.opcodeBase-1)
copy(m.header.stdOpcodeLengths, b.bytes(int(m.header.opcodeBase-1)))
m.header.include = make([]string, 1) // First entry is empty; file index entries are 1-indexed.
// Includes
for {
name := b.string()
if name == "" {
break
}
m.header.include = append(m.header.include, name)
}
// Files
m.header.file = make([]lineFile, 1, 10) // entries are 1-indexed in line number program.
for {
name := b.string()
if name == "" {
break
}
index := b.uint()
time := b.uint()
length := b.uint()
f := lineFile{
name: name,
index: int(index),
time: int(time),
length: int(length),
}
m.header.file = append(m.header.file, f)
}
return nil
}
// Special opcodes, page 117.
// There are seven steps to processing special opcodes. We break them up here
// because the caller needs to output a row between steps 2 and 4, and because
// we need to perform just step 2 for the opcode DW_LNS_const_add_pc.
func (m *lineMachine) specialOpcodeStep1(opcode byte) {
adjustedOpcode := int(opcode - m.header.opcodeBase)
lineAdvance := m.header.lineBase + (adjustedOpcode % m.header.lineRange)
m.line += uint64(lineAdvance)
}
func (m *lineMachine) specialOpcodeStep2(opcode byte) {
adjustedOpcode := int(opcode - m.header.opcodeBase)
advance := adjustedOpcode / m.header.lineRange
delta := (int(m.opIndex) + advance) / m.header.maxOpsPerInstruction
m.address += uint64(m.header.minInstructionLength * delta)
m.opIndex = (m.opIndex + uint64(advance)) % uint64(m.header.maxOpsPerInstruction)
}
func (m *lineMachine) specialOpcodeSteps4To7() {
m.basicBlock = false
m.prologueEnd = false
m.epilogueBegin = false
m.discriminator = 0
}
// evalCompilationUnit reads the next compilation unit and calls f at each output row.
// Line machine execution continues while f returns true.
func (m *lineMachine) evalCompilationUnit(b *buf, f func(m *lineMachine) (cont bool)) error {
m.reset()
for len(b.data) > 0 {
op := b.uint8()
if op >= m.header.opcodeBase {
m.specialOpcodeStep1(op)
m.specialOpcodeStep2(op)
// Step 3 is to output a row, so we call f here.
if !f(m) {
return nil
}
m.specialOpcodeSteps4To7()
continue
}
switch op {
case lineStartExtendedOpcode:
if len(b.data) == 0 {
return fmt.Errorf("DWARF: short extended opcode (1)")
}
size := b.uint()
if uint64(len(b.data)) < size {
return fmt.Errorf("DWARF: short extended opcode (2)")
}
op = b.uint8()
switch op {
case lineExtEndSequence:
m.endSequence = true
if !f(m) {
return nil
}
if len(b.data) == 0 {
return nil
}
m.reset()
case lineExtSetAddress:
m.address = b.addr()
m.opIndex = 0
case lineExtDefineFile:
return fmt.Errorf("DWARF: unimplemented define_file op")
case lineExtSetDiscriminator:
discriminator := b.uint()
m.discriminator = discriminator
default:
return fmt.Errorf("DWARF: unknown extended opcode %#x", op)
}
case lineStdCopy:
if !f(m) {
return nil
}
m.discriminator = 0
m.basicBlock = false
m.prologueEnd = false
m.epilogueBegin = false
case lineStdAdvancePC:
advance := b.uint()
delta := (int(m.opIndex) + int(advance)) / m.header.maxOpsPerInstruction
m.address += uint64(m.header.minInstructionLength * delta)
m.opIndex = (m.opIndex + uint64(advance)) % uint64(m.header.maxOpsPerInstruction)
m.basicBlock = false
m.prologueEnd = false
m.epilogueBegin = false
m.discriminator = 0
case lineStdAdvanceLine:
advance := b.int()
m.line = uint64(int64(m.line) + advance)
case lineStdSetFile:
index := b.uint()
m.file = index
case lineStdSetColumn:
column := b.uint()
m.column = column
case lineStdNegateStmt:
m.isStmt = !m.isStmt
case lineStdSetBasicBlock:
m.basicBlock = true
case lineStdFixedAdvancePC:
m.address += uint64(b.uint16())
m.opIndex = 0
case lineStdSetPrologueEnd:
m.prologueEnd = true
case lineStdSetEpilogueBegin:
m.epilogueBegin = true
case lineStdSetISA:
m.isa = b.uint()
case lineStdConstAddPC:
// Update the the address and op_index registers.
m.specialOpcodeStep2(255)
default:
panic("not reached")
}
}
return fmt.Errorf("DWARF: unexpected end of line number information")
}
// reset sets the machine's registers to the initial state. Page 111.
func (m *lineMachine) reset() {
m.address = 0
m.opIndex = 0
m.file = 1
m.line = 1
m.column = 0
m.isStmt = m.header.defaultIsStmt
m.basicBlock = false
m.endSequence = false
m.prologueEnd = false
m.epilogueBegin = false
m.isa = 0
m.discriminator = 0
}