1
0
mirror of https://github.com/beego/bee.git synced 2024-11-30 03:11:28 +00:00
bee/vendor/github.com/derekparker/delve/pkg/proc/threads.go
2018-10-13 21:45:53 +08:00

569 lines
16 KiB
Go

package proc
import (
"encoding/binary"
"errors"
"fmt"
"go/ast"
"go/token"
"path/filepath"
"reflect"
"strings"
"github.com/derekparker/delve/pkg/dwarf/godwarf"
"github.com/derekparker/delve/pkg/dwarf/reader"
)
// Thread represents a thread.
type Thread interface {
MemoryReadWriter
Location() (*Location, error)
// Breakpoint will return the breakpoint that this thread is stopped at or
// nil if the thread is not stopped at any breakpoint.
Breakpoint() BreakpointState
ThreadID() int
// Registers returns the CPU registers of this thread. The contents of the
// variable returned may or may not change to reflect the new CPU status
// when the thread is resumed or the registers are changed by calling
// SetPC/SetSP/etc.
// To insure that the the returned variable won't change call the Copy
// method of Registers.
Registers(floatingPoint bool) (Registers, error)
// RestoreRegisters restores saved registers
RestoreRegisters(Registers) error
Arch() Arch
BinInfo() *BinaryInfo
StepInstruction() error
// Blocked returns true if the thread is blocked
Blocked() bool
// SetCurrentBreakpoint updates the current breakpoint of this thread
SetCurrentBreakpoint() error
// Common returns the CommonThread structure for this thread
Common() *CommonThread
SetPC(uint64) error
SetSP(uint64) error
SetDX(uint64) error
}
// Location represents the location of a thread.
// Holds information on the current instruction
// address, the source file:line, and the function.
type Location struct {
PC uint64
File string
Line int
Fn *Function
}
// ErrThreadBlocked is returned when the thread
// is blocked in the scheduler.
type ErrThreadBlocked struct{}
func (tbe ErrThreadBlocked) Error() string {
return "thread blocked"
}
// CommonThread contains fields used by this package, common to all
// implementations of the Thread interface.
type CommonThread struct {
returnValues []*Variable
}
// ReturnValues reads the return values from the function executing on
// this thread using the provided LoadConfig.
func (t *CommonThread) ReturnValues(cfg LoadConfig) []*Variable {
loadValues(t.returnValues, cfg)
return t.returnValues
}
// topframe returns the two topmost frames of g, or thread if g is nil.
func topframe(g *G, thread Thread) (Stackframe, Stackframe, error) {
var frames []Stackframe
var err error
if g == nil {
if thread.Blocked() {
return Stackframe{}, Stackframe{}, ErrThreadBlocked{}
}
frames, err = ThreadStacktrace(thread, 1)
} else {
frames, err = g.Stacktrace(1, true)
}
if err != nil {
return Stackframe{}, Stackframe{}, err
}
switch len(frames) {
case 0:
return Stackframe{}, Stackframe{}, errors.New("empty stack trace")
case 1:
return frames[0], Stackframe{}, nil
default:
return frames[0], frames[1], nil
}
}
// ErrNoSourceForPC is returned when the given address
// does not correspond with a source file location.
type ErrNoSourceForPC struct {
pc uint64
}
func (err *ErrNoSourceForPC) Error() string {
return fmt.Sprintf("no source for PC %#x", err.pc)
}
// Set breakpoints at every line, and the return address. Also look for
// a deferred function and set a breakpoint there too.
// If stepInto is true it will also set breakpoints inside all
// functions called on the current source line, for non-absolute CALLs
// a breakpoint of kind StepBreakpoint is set on the CALL instruction,
// Continue will take care of setting a breakpoint to the destination
// once the CALL is reached.
//
// Regardless of stepInto the following breakpoints will be set:
// - a breakpoint on the first deferred function with NextDeferBreakpoint
// kind, the list of all the addresses to deferreturn calls in this function
// and condition checking that we remain on the same goroutine
// - a breakpoint on each line of the function, with a condition checking
// that we stay on the same stack frame and goroutine.
// - a breakpoint on the return address of the function, with a condition
// checking that we move to the previous stack frame and stay on the same
// goroutine.
//
// The breakpoint on the return address is *not* set if the current frame is
// an inlined call. For inlined calls topframe.Current.Fn is the function
// where the inlining happened and the second set of breakpoints will also
// cover the "return address".
//
// If inlinedStepOut is true this function implements the StepOut operation
// for an inlined function call. Everything works the same as normal except
// when removing instructions belonging to inlined calls we also remove all
// instructions belonging to the current inlined call.
func next(dbp Process, stepInto, inlinedStepOut bool) error {
selg := dbp.SelectedGoroutine()
curthread := dbp.CurrentThread()
topframe, retframe, err := topframe(selg, curthread)
if err != nil {
return err
}
if topframe.Current.Fn == nil {
return &ErrNoSourceForPC{topframe.Current.PC}
}
// sanity check
if inlinedStepOut && !topframe.Inlined {
panic("next called with inlinedStepOut but topframe was not inlined")
}
success := false
defer func() {
if !success {
dbp.ClearInternalBreakpoints()
}
}()
ext := filepath.Ext(topframe.Current.File)
csource := ext != ".go" && ext != ".s"
var thread MemoryReadWriter = curthread
var regs Registers
if selg != nil && selg.Thread != nil {
thread = selg.Thread
regs, err = selg.Thread.Registers(false)
if err != nil {
return err
}
}
text, err := disassemble(thread, regs, dbp.Breakpoints(), dbp.BinInfo(), topframe.Current.Fn.Entry, topframe.Current.Fn.End, false)
if err != nil && stepInto {
return err
}
sameGCond := SameGoroutineCondition(selg)
retFrameCond := andFrameoffCondition(sameGCond, retframe.FrameOffset())
sameFrameCond := andFrameoffCondition(sameGCond, topframe.FrameOffset())
var sameOrRetFrameCond ast.Expr
if sameGCond != nil {
if topframe.Inlined {
sameOrRetFrameCond = sameFrameCond
} else {
sameOrRetFrameCond = &ast.BinaryExpr{
Op: token.LAND,
X: sameGCond,
Y: &ast.BinaryExpr{
Op: token.LOR,
X: frameoffCondition(topframe.FrameOffset()),
Y: frameoffCondition(retframe.FrameOffset()),
},
}
}
}
if stepInto {
for _, instr := range text {
if instr.Loc.File != topframe.Current.File || instr.Loc.Line != topframe.Current.Line || !instr.IsCall() {
continue
}
if instr.DestLoc != nil && instr.DestLoc.Fn != nil {
if err := setStepIntoBreakpoint(dbp, []AsmInstruction{instr}, sameGCond); err != nil {
return err
}
} else {
// Non-absolute call instruction, set a StepBreakpoint here
if _, err := dbp.SetBreakpoint(instr.Loc.PC, StepBreakpoint, sameGCond); err != nil {
if _, ok := err.(BreakpointExistsError); !ok {
return err
}
}
}
}
}
if !csource {
deferreturns := []uint64{}
// Find all runtime.deferreturn locations in the function
// See documentation of Breakpoint.DeferCond for why this is necessary
for _, instr := range text {
if instr.IsCall() && instr.DestLoc != nil && instr.DestLoc.Fn != nil && instr.DestLoc.Fn.Name == "runtime.deferreturn" {
deferreturns = append(deferreturns, instr.Loc.PC)
}
}
// Set breakpoint on the most recently deferred function (if any)
var deferpc uint64
if topframe.TopmostDefer != nil && topframe.TopmostDefer.DeferredPC != 0 {
deferfn := dbp.BinInfo().PCToFunc(topframe.TopmostDefer.DeferredPC)
var err error
deferpc, err = FirstPCAfterPrologue(dbp, deferfn, false)
if err != nil {
return err
}
}
if deferpc != 0 && deferpc != topframe.Current.PC {
bp, err := dbp.SetBreakpoint(deferpc, NextDeferBreakpoint, sameGCond)
if err != nil {
if _, ok := err.(BreakpointExistsError); !ok {
return err
}
}
if bp != nil && stepInto {
bp.DeferReturns = deferreturns
}
}
}
// Add breakpoints on all the lines in the current function
pcs, err := topframe.Current.Fn.cu.lineInfo.AllPCsBetween(topframe.Current.Fn.Entry, topframe.Current.Fn.End-1, topframe.Current.File, topframe.Current.Line)
if err != nil {
return err
}
if !stepInto {
// Removing any PC range belonging to an inlined call
frame := topframe
if inlinedStepOut {
frame = retframe
}
pcs, err = removeInlinedCalls(dbp, pcs, frame)
if err != nil {
return err
}
}
if !csource {
var covered bool
for i := range pcs {
if topframe.Current.Fn.Entry <= pcs[i] && pcs[i] < topframe.Current.Fn.End {
covered = true
break
}
}
if !covered {
fn := dbp.BinInfo().PCToFunc(topframe.Ret)
if selg != nil && fn != nil && fn.Name == "runtime.goexit" {
return nil
}
}
}
for _, pc := range pcs {
if _, err := dbp.SetBreakpoint(pc, NextBreakpoint, sameFrameCond); err != nil {
if _, ok := err.(BreakpointExistsError); !ok {
dbp.ClearInternalBreakpoints()
return err
}
}
}
if !topframe.Inlined {
// Add a breakpoint on the return address for the current frame.
// For inlined functions there is no need to do this, the set of PCs
// returned by the AllPCsBetween call above already cover all instructions
// of the containing function.
bp, err := dbp.SetBreakpoint(topframe.Ret, NextBreakpoint, retFrameCond)
if err != nil {
if _, isexists := err.(BreakpointExistsError); isexists {
if bp.Kind == NextBreakpoint {
// If the return address shares the same address with one of the lines
// of the function (because we are stepping through a recursive
// function) then the corresponding breakpoint should be active both on
// this frame and on the return frame.
bp.Cond = sameOrRetFrameCond
}
}
// Return address could be wrong, if we are unable to set a breakpoint
// there it's ok.
}
if bp != nil {
configureReturnBreakpoint(dbp.BinInfo(), bp, &topframe, retFrameCond)
}
}
if bp := curthread.Breakpoint(); bp.Breakpoint == nil {
curthread.SetCurrentBreakpoint()
}
success = true
return nil
}
// Removes instructions belonging to inlined calls of topframe from pcs.
// If includeCurrentFn is true it will also remove all instructions
// belonging to the current function.
func removeInlinedCalls(dbp Process, pcs []uint64, topframe Stackframe) ([]uint64, error) {
bi := dbp.BinInfo()
irdr := reader.InlineStack(bi.dwarf, topframe.Call.Fn.offset, 0)
for irdr.Next() {
e := irdr.Entry()
if e.Offset == topframe.Call.Fn.offset {
continue
}
ranges, err := bi.dwarf.Ranges(e)
if err != nil {
return pcs, err
}
for _, rng := range ranges {
pcs = removePCsBetween(pcs, rng[0], rng[1], bi.staticBase)
}
irdr.SkipChildren()
}
return pcs, irdr.Err()
}
func removePCsBetween(pcs []uint64, start, end, staticBase uint64) []uint64 {
out := pcs[:0]
for _, pc := range pcs {
if pc < start+staticBase || pc >= end+staticBase {
out = append(out, pc)
}
}
return out
}
func setStepIntoBreakpoint(dbp Process, text []AsmInstruction, cond ast.Expr) error {
if len(text) <= 0 {
return nil
}
instr := text[0]
if instr.DestLoc == nil || instr.DestLoc.Fn == nil {
return nil
}
fn := instr.DestLoc.Fn
// Ensure PC and Entry match, otherwise StepInto is likely to set
// its breakpoint before DestLoc.PC and hence run too far ahead.
// Calls to runtime.duffzero and duffcopy have this problem.
if fn.Entry != instr.DestLoc.PC {
return nil
}
// Skip unexported runtime functions
if strings.HasPrefix(fn.Name, "runtime.") && !isExportedRuntime(fn.Name) {
return nil
}
//TODO(aarzilli): if we want to let users hide functions
// or entire packages from being stepped into with 'step'
// those extra checks should be done here.
// Set a breakpoint after the function's prologue
pc, _ := FirstPCAfterPrologue(dbp, fn, false)
if _, err := dbp.SetBreakpoint(pc, NextBreakpoint, cond); err != nil {
if _, ok := err.(BreakpointExistsError); !ok {
return err
}
}
return nil
}
func getGVariable(thread Thread) (*Variable, error) {
regs, err := thread.Registers(false)
if err != nil {
return nil, err
}
gaddr, hasgaddr := regs.GAddr()
if !hasgaddr {
gaddrbs := make([]byte, thread.Arch().PtrSize())
_, err := thread.ReadMemory(gaddrbs, uintptr(regs.TLS()+thread.BinInfo().GStructOffset()))
if err != nil {
return nil, err
}
gaddr = binary.LittleEndian.Uint64(gaddrbs)
}
return newGVariable(thread, uintptr(gaddr), thread.Arch().DerefTLS())
}
func newGVariable(thread Thread, gaddr uintptr, deref bool) (*Variable, error) {
typ, err := thread.BinInfo().findType("runtime.g")
if err != nil {
return nil, err
}
name := ""
if deref {
typ = &godwarf.PtrType{
CommonType: godwarf.CommonType{
ByteSize: int64(thread.Arch().PtrSize()),
Name: "",
ReflectKind: reflect.Ptr,
Offset: 0,
},
Type: typ,
}
} else {
name = "runtime.curg"
}
return newVariableFromThread(thread, name, gaddr, typ), nil
}
// GetG returns information on the G (goroutine) that is executing on this thread.
//
// The G structure for a thread is stored in thread local storage. Here we simply
// calculate the address and read and parse the G struct.
//
// We cannot simply use the allg linked list in order to find the M that represents
// the given OS thread and follow its G pointer because on Darwin mach ports are not
// universal, so our port for this thread would not map to the `id` attribute of the M
// structure. Also, when linked against libc, Go prefers the libc version of clone as
// opposed to the runtime version. This has the consequence of not setting M.id for
// any thread, regardless of OS.
//
// In order to get around all this craziness, we read the address of the G structure for
// the current thread from the thread local storage area.
func GetG(thread Thread) (*G, error) {
gaddr, err := getGVariable(thread)
if err != nil {
return nil, err
}
g, err := gaddr.parseG()
if err != nil {
return nil, err
}
if g.ID == 0 {
// The runtime uses a special goroutine with ID == 0 to mark that the
// current goroutine is executing on the system stack (sometimes also
// referred to as the g0 stack or scheduler stack, I'm not sure if there's
// actually any difference between those).
// For our purposes it's better if we always return the real goroutine
// since the rest of the code assumes the goroutine ID is univocal.
// The real 'current goroutine' is stored in g0.m.curg
curgvar, err := g.variable.fieldVariable("m").structMember("curg")
if err != nil {
return nil, err
}
g, err = curgvar.parseG()
if err != nil {
return nil, err
}
g.SystemStack = true
}
g.Thread = thread
if loc, err := thread.Location(); err == nil {
g.CurrentLoc = *loc
}
return g, nil
}
// ThreadScope returns an EvalScope for this thread.
func ThreadScope(thread Thread) (*EvalScope, error) {
locations, err := ThreadStacktrace(thread, 1)
if err != nil {
return nil, err
}
if len(locations) < 1 {
return nil, errors.New("could not decode first frame")
}
return FrameToScope(thread.BinInfo(), thread, nil, locations...), nil
}
// GoroutineScope returns an EvalScope for the goroutine running on this thread.
func GoroutineScope(thread Thread) (*EvalScope, error) {
locations, err := ThreadStacktrace(thread, 1)
if err != nil {
return nil, err
}
if len(locations) < 1 {
return nil, errors.New("could not decode first frame")
}
g, err := GetG(thread)
if err != nil {
return nil, err
}
return FrameToScope(thread.BinInfo(), thread, g, locations...), nil
}
// onNextGoroutine returns true if this thread is on the goroutine requested by the current 'next' command
func onNextGoroutine(thread Thread, breakpoints *BreakpointMap) (bool, error) {
var bp *Breakpoint
for i := range breakpoints.M {
if breakpoints.M[i].Kind != UserBreakpoint && breakpoints.M[i].internalCond != nil {
bp = breakpoints.M[i]
break
}
}
if bp == nil {
return false, nil
}
// Internal breakpoint conditions can take multiple different forms:
// Step into breakpoints:
// runtime.curg.goid == X
// Next or StepOut breakpoints:
// runtime.curg.goid == X && runtime.frameoff == Y
// Breakpoints that can be hit either by stepping on a line in the same
// function or by returning from the function:
// runtime.curg.goid == X && (runtime.frameoff == Y || runtime.frameoff == Z)
// Here we are only interested in testing the runtime.curg.goid clause.
w := onNextGoroutineWalker{thread: thread}
ast.Walk(&w, bp.internalCond)
return w.ret, w.err
}
type onNextGoroutineWalker struct {
thread Thread
ret bool
err error
}
func (w *onNextGoroutineWalker) Visit(n ast.Node) ast.Visitor {
if binx, isbin := n.(*ast.BinaryExpr); isbin && binx.Op == token.EQL && exprToString(binx.X) == "runtime.curg.goid" {
w.ret, w.err = evalBreakpointCondition(w.thread, n.(ast.Expr))
return nil
}
return w
}