bee/vendor/github.com/derekparker/delve/pkg/proc/bininfo.go

879 lines
24 KiB
Go

package proc
import (
"bytes"
"debug/dwarf"
"debug/elf"
"debug/macho"
"debug/pe"
"encoding/binary"
"encoding/hex"
"errors"
"fmt"
"io"
"os"
"sort"
"strings"
"sync"
"time"
"github.com/derekparker/delve/pkg/dwarf/frame"
"github.com/derekparker/delve/pkg/dwarf/godwarf"
"github.com/derekparker/delve/pkg/dwarf/line"
"github.com/derekparker/delve/pkg/dwarf/op"
"github.com/derekparker/delve/pkg/dwarf/reader"
"github.com/derekparker/delve/pkg/goversion"
)
// BinaryInfo holds information on the binary being executed.
type BinaryInfo struct {
lastModified time.Time // Time the executable of this process was last modified
GOOS string
closer io.Closer
sepDebugCloser io.Closer
staticBase uint64
// Maps package names to package paths, needed to lookup types inside DWARF info
packageMap map[string]string
Arch Arch
dwarf *dwarf.Data
frameEntries frame.FrameDescriptionEntries
loclist loclistReader
compileUnits []*compileUnit
types map[string]dwarf.Offset
packageVars []packageVar // packageVars is a list of all global/package variables in debug_info, sorted by address
gStructOffset uint64
// Functions is a list of all DW_TAG_subprogram entries in debug_info, sorted by entry point
Functions []Function
// Sources is a list of all source files found in debug_line.
Sources []string
// LookupFunc maps function names to a description of the function.
LookupFunc map[string]*Function
typeCache map[dwarf.Offset]godwarf.Type
loadModuleDataOnce sync.Once
moduleData []moduleData
nameOfRuntimeType map[uintptr]nameOfRuntimeTypeEntry
// runtimeTypeToDIE maps between the offset of a runtime._type in
// runtime.moduledata.types and the offset of the DIE in debug_info. This
// map is filled by using the extended attribute godwarf.AttrGoRuntimeType
// which was added in go 1.11.
runtimeTypeToDIE map[uint64]runtimeTypeDIE
// consts[off] lists all the constants with the type defined at offset off.
consts constantsMap
loadErrMu sync.Mutex
loadErr error
dwarfReader *dwarf.Reader
}
// ErrUnsupportedLinuxArch is returned when attempting to debug a binary compiled for an unsupported architecture.
var ErrUnsupportedLinuxArch = errors.New("unsupported architecture - only linux/amd64 is supported")
// ErrUnsupportedWindowsArch is returned when attempting to debug a binary compiled for an unsupported architecture.
var ErrUnsupportedWindowsArch = errors.New("unsupported architecture of windows/386 - only windows/amd64 is supported")
// ErrUnsupportedDarwinArch is returned when attempting to debug a binary compiled for an unsupported architecture.
var ErrUnsupportedDarwinArch = errors.New("unsupported architecture - only darwin/amd64 is supported")
var ErrCouldNotDetermineRelocation = errors.New("could not determine the base address of a PIE")
const dwarfGoLanguage = 22 // DW_LANG_Go (from DWARF v5, section 7.12, page 231)
type compileUnit struct {
Name string // univocal name for non-go compile units
LowPC uint64
Ranges [][2]uint64
entry *dwarf.Entry // debug_info entry describing this compile unit
isgo bool // true if this is the go compile unit
lineInfo *line.DebugLineInfo // debug_line segment associated with this compile unit
concreteInlinedFns []inlinedFn // list of concrete inlined functions within this compile unit
optimized bool // this compile unit is optimized
producer string // producer attribute
startOffset, endOffset dwarf.Offset // interval of offsets contained in this compile unit
}
type partialUnitConstant struct {
name string
typ dwarf.Offset
value int64
}
type partialUnit struct {
entry *dwarf.Entry
types map[string]dwarf.Offset
variables []packageVar
constants []partialUnitConstant
functions []Function
}
// inlinedFn represents a concrete inlined function, e.g.
// an entry for the generated code of an inlined function.
type inlinedFn struct {
Name string // Name of the function that was inlined
LowPC, HighPC uint64 // Address range of the generated inlined instructions
CallFile string // File of the call site of the inlined function
CallLine int64 // Line of the call site of the inlined function
Parent *Function // The function that contains this inlined function
}
// Function describes a function in the target program.
type Function struct {
Name string
Entry, End uint64 // same as DW_AT_lowpc and DW_AT_highpc
offset dwarf.Offset
cu *compileUnit
}
// PackageName returns the package part of the symbol name,
// or the empty string if there is none.
// Borrowed from $GOROOT/debug/gosym/symtab.go
func (fn *Function) PackageName() string {
return packageName(fn.Name)
}
func packageName(name string) string {
pathend := strings.LastIndex(name, "/")
if pathend < 0 {
pathend = 0
}
if i := strings.Index(name[pathend:], "."); i != -1 {
return name[:pathend+i]
}
return ""
}
// ReceiverName returns the receiver type name of this symbol,
// or the empty string if there is none.
// Borrowed from $GOROOT/debug/gosym/symtab.go
func (fn *Function) ReceiverName() string {
pathend := strings.LastIndex(fn.Name, "/")
if pathend < 0 {
pathend = 0
}
l := strings.Index(fn.Name[pathend:], ".")
r := strings.LastIndex(fn.Name[pathend:], ".")
if l == -1 || r == -1 || l == r {
return ""
}
return fn.Name[pathend+l+1 : pathend+r]
}
// BaseName returns the symbol name without the package or receiver name.
// Borrowed from $GOROOT/debug/gosym/symtab.go
func (fn *Function) BaseName() string {
if i := strings.LastIndex(fn.Name, "."); i != -1 {
return fn.Name[i+1:]
}
return fn.Name
}
// Optimized returns true if the function was optimized by the compiler.
func (fn *Function) Optimized() bool {
return fn.cu.optimized
}
type constantsMap map[dwarf.Offset]*constantType
type constantType struct {
initialized bool
values []constantValue
}
type constantValue struct {
name string
fullName string
value int64
singleBit bool
}
// packageVar represents a package-level variable (or a C global variable).
// If a global variable does not have an address (for example it's stored in
// a register, or non-contiguously) addr will be 0.
type packageVar struct {
name string
offset dwarf.Offset
addr uint64
}
type loclistReader struct {
data []byte
cur int
ptrSz int
}
func (rdr *loclistReader) Seek(off int) {
rdr.cur = off
}
func (rdr *loclistReader) read(sz int) []byte {
r := rdr.data[rdr.cur : rdr.cur+sz]
rdr.cur += sz
return r
}
func (rdr *loclistReader) oneAddr() uint64 {
switch rdr.ptrSz {
case 4:
addr := binary.LittleEndian.Uint32(rdr.read(rdr.ptrSz))
if addr == ^uint32(0) {
return ^uint64(0)
}
return uint64(addr)
case 8:
addr := uint64(binary.LittleEndian.Uint64(rdr.read(rdr.ptrSz)))
return addr
default:
panic("bad address size")
}
}
func (rdr *loclistReader) Next(e *loclistEntry) bool {
e.lowpc = rdr.oneAddr()
e.highpc = rdr.oneAddr()
if e.lowpc == 0 && e.highpc == 0 {
return false
}
if e.BaseAddressSelection() {
e.instr = nil
return true
}
instrlen := binary.LittleEndian.Uint16(rdr.read(2))
e.instr = rdr.read(int(instrlen))
return true
}
type loclistEntry struct {
lowpc, highpc uint64
instr []byte
}
type runtimeTypeDIE struct {
offset dwarf.Offset
kind int64
}
func (e *loclistEntry) BaseAddressSelection() bool {
return e.lowpc == ^uint64(0)
}
type buildIDHeader struct {
Namesz uint32
Descsz uint32
Type uint32
}
// NewBinaryInfo returns an initialized but unloaded BinaryInfo struct.
func NewBinaryInfo(goos, goarch string) *BinaryInfo {
r := &BinaryInfo{GOOS: goos, nameOfRuntimeType: make(map[uintptr]nameOfRuntimeTypeEntry), typeCache: make(map[dwarf.Offset]godwarf.Type)}
// TODO: find better way to determine proc arch (perhaps use executable file info).
switch goarch {
case "amd64":
r.Arch = AMD64Arch(goos)
}
return r
}
// LoadBinaryInfo will load and store the information from the binary at 'path'.
// It is expected this will be called in parallel with other initialization steps
// so a sync.WaitGroup must be provided.
func (bi *BinaryInfo) LoadBinaryInfo(path string, entryPoint uint64, wg *sync.WaitGroup) error {
fi, err := os.Stat(path)
if err == nil {
bi.lastModified = fi.ModTime()
}
switch bi.GOOS {
case "linux":
return bi.LoadBinaryInfoElf(path, entryPoint, wg)
case "windows":
return bi.LoadBinaryInfoPE(path, entryPoint, wg)
case "darwin":
return bi.LoadBinaryInfoMacho(path, entryPoint, wg)
}
return errors.New("unsupported operating system")
return nil
}
// GStructOffset returns the offset of the G
// struct in thread local storage.
func (bi *BinaryInfo) GStructOffset() uint64 {
return bi.gStructOffset
}
// LastModified returns the last modified time of the binary.
func (bi *BinaryInfo) LastModified() time.Time {
return bi.lastModified
}
// DwarfReader returns a reader for the dwarf data
func (bi *BinaryInfo) DwarfReader() *reader.Reader {
return reader.New(bi.dwarf)
}
// Types returns list of types present in the debugged program.
func (bi *BinaryInfo) Types() ([]string, error) {
types := make([]string, 0, len(bi.types))
for k := range bi.types {
types = append(types, k)
}
return types, nil
}
// PCToLine converts an instruction address to a file/line/function.
func (bi *BinaryInfo) PCToLine(pc uint64) (string, int, *Function) {
fn := bi.PCToFunc(pc)
if fn == nil {
return "", 0, nil
}
f, ln := fn.cu.lineInfo.PCToLine(fn.Entry, pc)
return f, ln, fn
}
// LineToPC converts a file:line into a memory address.
func (bi *BinaryInfo) LineToPC(filename string, lineno int) (pc uint64, fn *Function, err error) {
for _, cu := range bi.compileUnits {
if cu.lineInfo.Lookup[filename] != nil {
pc = cu.lineInfo.LineToPC(filename, lineno)
if pc == 0 {
// Check to see if this file:line belongs to the call site
// of an inlined function.
for _, ifn := range cu.concreteInlinedFns {
if strings.Contains(ifn.CallFile, filename) && ifn.CallLine == int64(lineno) {
pc = ifn.LowPC
fn = ifn.Parent
return
}
}
}
fn = bi.PCToFunc(pc)
if fn != nil {
return
}
}
}
err = fmt.Errorf("could not find %s:%d", filename, lineno)
return
}
// AllPCsForFileLine returns all PC addresses for the given filename:lineno.
func (bi *BinaryInfo) AllPCsForFileLine(filename string, lineno int) []uint64 {
r := make([]uint64, 0, 1)
for _, cu := range bi.compileUnits {
if cu.lineInfo.Lookup[filename] != nil {
r = append(r, cu.lineInfo.AllPCsForFileLine(filename, lineno)...)
}
}
return r
}
// PCToFunc returns the function containing the given PC address
func (bi *BinaryInfo) PCToFunc(pc uint64) *Function {
i := sort.Search(len(bi.Functions), func(i int) bool {
fn := bi.Functions[i]
return pc <= fn.Entry || (fn.Entry <= pc && pc < fn.End)
})
if i != len(bi.Functions) {
fn := &bi.Functions[i]
if fn.Entry <= pc && pc < fn.End {
return fn
}
}
return nil
}
// Close closes all internal readers.
func (bi *BinaryInfo) Close() error {
if bi.sepDebugCloser != nil {
bi.sepDebugCloser.Close()
}
return bi.closer.Close()
}
func (bi *BinaryInfo) setLoadError(fmtstr string, args ...interface{}) {
bi.loadErrMu.Lock()
bi.loadErr = fmt.Errorf(fmtstr, args...)
bi.loadErrMu.Unlock()
}
// LoadError returns any internal load error.
func (bi *BinaryInfo) LoadError() error {
return bi.loadErr
}
type nilCloser struct{}
func (c *nilCloser) Close() error { return nil }
// LoadFromData creates a new BinaryInfo object using the specified data.
// This is used for debugging BinaryInfo, you should use LoadBinary instead.
func (bi *BinaryInfo) LoadFromData(dwdata *dwarf.Data, debugFrameBytes, debugLineBytes, debugLocBytes []byte) {
bi.closer = (*nilCloser)(nil)
bi.sepDebugCloser = (*nilCloser)(nil)
bi.dwarf = dwdata
if debugFrameBytes != nil {
bi.frameEntries = frame.Parse(debugFrameBytes, frame.DwarfEndian(debugFrameBytes), bi.staticBase)
}
bi.loclistInit(debugLocBytes)
bi.loadDebugInfoMaps(debugLineBytes, nil, nil)
}
func (bi *BinaryInfo) loclistInit(data []byte) {
bi.loclist.data = data
bi.loclist.ptrSz = bi.Arch.PtrSize()
}
func (bi *BinaryInfo) locationExpr(entry reader.Entry, attr dwarf.Attr, pc uint64) ([]byte, string, error) {
a := entry.Val(attr)
if a == nil {
return nil, "", fmt.Errorf("no location attribute %s", attr)
}
if instr, ok := a.([]byte); ok {
var descr bytes.Buffer
fmt.Fprintf(&descr, "[block] ")
op.PrettyPrint(&descr, instr)
return instr, descr.String(), nil
}
off, ok := a.(int64)
if !ok {
return nil, "", fmt.Errorf("could not interpret location attribute %s", attr)
}
if bi.loclist.data == nil {
return nil, "", fmt.Errorf("could not find loclist entry at %#x for address %#x (no debug_loc section found)", off, pc)
}
instr := bi.loclistEntry(off, pc)
if instr == nil {
return nil, "", fmt.Errorf("could not find loclist entry at %#x for address %#x", off, pc)
}
var descr bytes.Buffer
fmt.Fprintf(&descr, "[%#x:%#x] ", off, pc)
op.PrettyPrint(&descr, instr)
return instr, descr.String(), nil
}
// Location returns the location described by attribute attr of entry.
// This will either be an int64 address or a slice of Pieces for locations
// that don't correspond to a single memory address (registers, composite
// locations).
func (bi *BinaryInfo) Location(entry reader.Entry, attr dwarf.Attr, pc uint64, regs op.DwarfRegisters) (int64, []op.Piece, string, error) {
instr, descr, err := bi.locationExpr(entry, attr, pc)
if err != nil {
return 0, nil, "", err
}
addr, pieces, err := op.ExecuteStackProgram(regs, instr)
return addr, pieces, descr, err
}
// loclistEntry returns the loclist entry in the loclist starting at off,
// for address pc.
func (bi *BinaryInfo) loclistEntry(off int64, pc uint64) []byte {
var base uint64
if cu := bi.findCompileUnit(pc); cu != nil {
base = cu.LowPC
}
bi.loclist.Seek(int(off))
var e loclistEntry
for bi.loclist.Next(&e) {
if e.BaseAddressSelection() {
base = e.highpc
continue
}
if pc >= e.lowpc+base && pc < e.highpc+base {
return e.instr
}
}
return nil
}
// findCompileUnit returns the compile unit containing address pc.
func (bi *BinaryInfo) findCompileUnit(pc uint64) *compileUnit {
for _, cu := range bi.compileUnits {
for _, rng := range cu.Ranges {
if pc >= rng[0] && pc < rng[1] {
return cu
}
}
}
return nil
}
func (bi *BinaryInfo) findCompileUnitForOffset(off dwarf.Offset) *compileUnit {
for _, cu := range bi.compileUnits {
if off >= cu.startOffset && off < cu.endOffset {
return cu
}
}
return nil
}
// Producer returns the value of DW_AT_producer.
func (bi *BinaryInfo) Producer() string {
for _, cu := range bi.compileUnits {
if cu.isgo && cu.producer != "" {
return cu.producer
}
}
return ""
}
// Type returns the Dwarf type entry at `offset`.
func (bi *BinaryInfo) Type(offset dwarf.Offset) (godwarf.Type, error) {
return godwarf.ReadType(bi.dwarf, offset, bi.typeCache)
}
// ELF ///////////////////////////////////////////////////////////////
// ErrNoBuildIDNote is used in openSeparateDebugInfo to signal there's no
// build-id note on the binary, so LoadBinaryInfoElf will return
// the error message coming from elfFile.DWARF() instead.
type ErrNoBuildIDNote struct{}
func (e *ErrNoBuildIDNote) Error() string {
return "can't find build-id note on binary"
}
// openSeparateDebugInfo searches for a file containing the separate
// debug info for the binary using the "build ID" method as described
// in GDB's documentation [1], and if found returns two handles, one
// for the bare file, and another for its corresponding elf.File.
// [1] https://sourceware.org/gdb/onlinedocs/gdb/Separate-Debug-Files.html
func (bi *BinaryInfo) openSeparateDebugInfo(exe *elf.File) (*os.File, *elf.File, error) {
buildid := exe.Section(".note.gnu.build-id")
if buildid == nil {
return nil, nil, &ErrNoBuildIDNote{}
}
br := buildid.Open()
bh := new(buildIDHeader)
if err := binary.Read(br, binary.LittleEndian, bh); err != nil {
return nil, nil, errors.New("can't read build-id header: " + err.Error())
}
name := make([]byte, bh.Namesz)
if err := binary.Read(br, binary.LittleEndian, name); err != nil {
return nil, nil, errors.New("can't read build-id name: " + err.Error())
}
if strings.TrimSpace(string(name)) != "GNU\x00" {
return nil, nil, errors.New("invalid build-id signature")
}
descBinary := make([]byte, bh.Descsz)
if err := binary.Read(br, binary.LittleEndian, descBinary); err != nil {
return nil, nil, errors.New("can't read build-id desc: " + err.Error())
}
desc := hex.EncodeToString(descBinary)
debugPath := fmt.Sprintf("/usr/lib/debug/.build-id/%s/%s.debug", desc[:2], desc[2:])
sepFile, err := os.OpenFile(debugPath, 0, os.ModePerm)
if err != nil {
return nil, nil, errors.New("can't open separate debug file: " + err.Error())
}
elfFile, err := elf.NewFile(sepFile)
if err != nil {
sepFile.Close()
return nil, nil, fmt.Errorf("can't open separate debug file %q: %v", debugPath, err.Error())
}
if elfFile.Machine != elf.EM_X86_64 {
sepFile.Close()
return nil, nil, fmt.Errorf("can't open separate debug file %q: %v", debugPath, ErrUnsupportedLinuxArch.Error())
}
return sepFile, elfFile, nil
}
// LoadBinaryInfoElf specifically loads information from an ELF binary.
func (bi *BinaryInfo) LoadBinaryInfoElf(path string, entryPoint uint64, wg *sync.WaitGroup) error {
exe, err := os.OpenFile(path, 0, os.ModePerm)
if err != nil {
return err
}
bi.closer = exe
elfFile, err := elf.NewFile(exe)
if err != nil {
return err
}
if elfFile.Machine != elf.EM_X86_64 {
return ErrUnsupportedLinuxArch
}
if entryPoint != 0 {
bi.staticBase = entryPoint - elfFile.Entry
} else {
if elfFile.Type == elf.ET_DYN {
return ErrCouldNotDetermineRelocation
}
}
dwarfFile := elfFile
bi.dwarf, err = elfFile.DWARF()
if err != nil {
var sepFile *os.File
var serr error
sepFile, dwarfFile, serr = bi.openSeparateDebugInfo(elfFile)
if serr != nil {
if _, ok := serr.(*ErrNoBuildIDNote); ok {
return err
}
return serr
}
bi.sepDebugCloser = sepFile
bi.dwarf, err = dwarfFile.DWARF()
if err != nil {
return err
}
}
bi.dwarfReader = bi.dwarf.Reader()
debugLineBytes, err := godwarf.GetDebugSectionElf(dwarfFile, "line")
if err != nil {
return err
}
debugLocBytes, _ := godwarf.GetDebugSectionElf(dwarfFile, "loc")
bi.loclistInit(debugLocBytes)
wg.Add(3)
go bi.parseDebugFrameElf(dwarfFile, wg)
go bi.loadDebugInfoMaps(debugLineBytes, wg, nil)
go bi.setGStructOffsetElf(dwarfFile, wg)
return nil
}
func (bi *BinaryInfo) parseDebugFrameElf(exe *elf.File, wg *sync.WaitGroup) {
defer wg.Done()
debugFrameData, err := godwarf.GetDebugSectionElf(exe, "frame")
if err != nil {
bi.setLoadError("could not get .debug_frame section: %v", err)
return
}
debugInfoData, err := godwarf.GetDebugSectionElf(exe, "info")
if err != nil {
bi.setLoadError("could not get .debug_info section: %v", err)
return
}
bi.frameEntries = frame.Parse(debugFrameData, frame.DwarfEndian(debugInfoData), bi.staticBase)
}
func (bi *BinaryInfo) setGStructOffsetElf(exe *elf.File, wg *sync.WaitGroup) {
defer wg.Done()
// This is a bit arcane. Essentially:
// - If the program is pure Go, it can do whatever it wants, and puts the G
// pointer at %fs-8.
// - Otherwise, Go asks the external linker to place the G pointer by
// emitting runtime.tlsg, a TLS symbol, which is relocated to the chosen
// offset in libc's TLS block.
symbols, err := exe.Symbols()
if err != nil {
bi.setLoadError("could not parse ELF symbols: %v", err)
return
}
var tlsg *elf.Symbol
for _, symbol := range symbols {
if symbol.Name == "runtime.tlsg" {
s := symbol
tlsg = &s
break
}
}
if tlsg == nil {
bi.gStructOffset = ^uint64(8) + 1 // -8
return
}
var tls *elf.Prog
for _, prog := range exe.Progs {
if prog.Type == elf.PT_TLS {
tls = prog
break
}
}
// The TLS register points to the end of the TLS block, which is
// tls.Memsz long. runtime.tlsg is an offset from the beginning of that block.
bi.gStructOffset = ^(tls.Memsz) + 1 + tlsg.Value // -tls.Memsz + tlsg.Value
}
// PE ////////////////////////////////////////////////////////////////
const _IMAGE_DLLCHARACTERISTICS_DYNAMIC_BASE = 0x0040
// LoadBinaryInfoPE specifically loads information from a PE binary.
func (bi *BinaryInfo) LoadBinaryInfoPE(path string, entryPoint uint64, wg *sync.WaitGroup) error {
peFile, closer, err := openExecutablePathPE(path)
if err != nil {
return err
}
bi.closer = closer
if peFile.Machine != pe.IMAGE_FILE_MACHINE_AMD64 {
return ErrUnsupportedWindowsArch
}
bi.dwarf, err = peFile.DWARF()
if err != nil {
return err
}
//TODO(aarzilli): actually test this when Go supports PIE buildmode on Windows.
opth := peFile.OptionalHeader.(*pe.OptionalHeader64)
if entryPoint != 0 {
bi.staticBase = entryPoint - opth.ImageBase
} else {
if opth.DllCharacteristics&_IMAGE_DLLCHARACTERISTICS_DYNAMIC_BASE != 0 {
return ErrCouldNotDetermineRelocation
}
}
bi.dwarfReader = bi.dwarf.Reader()
debugLineBytes, err := godwarf.GetDebugSectionPE(peFile, "line")
if err != nil {
return err
}
debugLocBytes, _ := godwarf.GetDebugSectionPE(peFile, "loc")
bi.loclistInit(debugLocBytes)
wg.Add(2)
go bi.parseDebugFramePE(peFile, wg)
go bi.loadDebugInfoMaps(debugLineBytes, wg, nil)
// Use ArbitraryUserPointer (0x28) as pointer to pointer
// to G struct per:
// https://golang.org/src/runtime/cgo/gcc_windows_amd64.c
bi.gStructOffset = 0x28
return nil
}
func openExecutablePathPE(path string) (*pe.File, io.Closer, error) {
f, err := os.OpenFile(path, 0, os.ModePerm)
if err != nil {
return nil, nil, err
}
peFile, err := pe.NewFile(f)
if err != nil {
f.Close()
return nil, nil, err
}
return peFile, f, nil
}
func (bi *BinaryInfo) parseDebugFramePE(exe *pe.File, wg *sync.WaitGroup) {
defer wg.Done()
debugFrameBytes, err := godwarf.GetDebugSectionPE(exe, "frame")
if err != nil {
bi.setLoadError("could not get .debug_frame section: %v", err)
return
}
debugInfoBytes, err := godwarf.GetDebugSectionPE(exe, "info")
if err != nil {
bi.setLoadError("could not get .debug_info section: %v", err)
return
}
bi.frameEntries = frame.Parse(debugFrameBytes, frame.DwarfEndian(debugInfoBytes), bi.staticBase)
}
// Borrowed from https://golang.org/src/cmd/internal/objfile/pe.go
func findPESymbol(f *pe.File, name string) (*pe.Symbol, error) {
for _, s := range f.Symbols {
if s.Name != name {
continue
}
if s.SectionNumber <= 0 {
return nil, fmt.Errorf("symbol %s: invalid section number %d", name, s.SectionNumber)
}
if len(f.Sections) < int(s.SectionNumber) {
return nil, fmt.Errorf("symbol %s: section number %d is larger than max %d", name, s.SectionNumber, len(f.Sections))
}
return s, nil
}
return nil, fmt.Errorf("no %s symbol found", name)
}
// MACH-O ////////////////////////////////////////////////////////////
// LoadBinaryInfoMacho specifically loads information from a Mach-O binary.
func (bi *BinaryInfo) LoadBinaryInfoMacho(path string, entryPoint uint64, wg *sync.WaitGroup) error {
exe, err := macho.Open(path)
if err != nil {
return err
}
bi.closer = exe
if exe.Cpu != macho.CpuAmd64 {
return ErrUnsupportedDarwinArch
}
bi.dwarf, err = exe.DWARF()
if err != nil {
return err
}
bi.dwarfReader = bi.dwarf.Reader()
debugLineBytes, err := godwarf.GetDebugSectionMacho(exe, "line")
if err != nil {
return err
}
debugLocBytes, _ := godwarf.GetDebugSectionMacho(exe, "loc")
bi.loclistInit(debugLocBytes)
wg.Add(2)
go bi.parseDebugFrameMacho(exe, wg)
go bi.loadDebugInfoMaps(debugLineBytes, wg, bi.setGStructOffsetMacho)
return nil
}
func (bi *BinaryInfo) setGStructOffsetMacho() {
// In go1.11 it's 0x30, before 0x8a0, see:
// https://github.com/golang/go/issues/23617
// and go commit b3a854c733257c5249c3435ffcee194f8439676a
producer := bi.Producer()
if producer != "" && goversion.ProducerAfterOrEqual(producer, 1, 11) {
bi.gStructOffset = 0x30
return
}
bi.gStructOffset = 0x8a0
}
func (bi *BinaryInfo) parseDebugFrameMacho(exe *macho.File, wg *sync.WaitGroup) {
defer wg.Done()
debugFrameBytes, err := godwarf.GetDebugSectionMacho(exe, "frame")
if err != nil {
bi.setLoadError("could not get __debug_frame section: %v", err)
return
}
debugInfoBytes, err := godwarf.GetDebugSectionMacho(exe, "info")
if err != nil {
bi.setLoadError("could not get .debug_info section: %v", err)
return
}
bi.frameEntries = frame.Parse(debugFrameBytes, frame.DwarfEndian(debugInfoBytes), bi.staticBase)
}