bee/vendor/github.com/derekparker/delve/pkg/proc/fncall.go

562 lines
17 KiB
Go

package proc
import (
"debug/dwarf"
"encoding/binary"
"errors"
"fmt"
"go/ast"
"go/constant"
"go/parser"
"reflect"
"sort"
"github.com/derekparker/delve/pkg/dwarf/godwarf"
"github.com/derekparker/delve/pkg/dwarf/op"
"github.com/derekparker/delve/pkg/dwarf/reader"
"github.com/derekparker/delve/pkg/logflags"
"github.com/sirupsen/logrus"
"golang.org/x/arch/x86/x86asm"
)
// This file implements the function call injection introduced in go1.11.
//
// The protocol is described in $GOROOT/src/runtime/asm_amd64.s in the
// comments for function runtime·debugCallV1.
//
// There are two main entry points here. The first one is CallFunction which
// evaluates a function call expression, sets up the function call on the
// selected goroutine and resumes execution of the process.
//
// The second one is (*FunctionCallState).step() which is called every time
// the process stops at a breakpoint inside one of the debug injcetion
// functions.
const (
debugCallFunctionNamePrefix1 = "debugCall"
debugCallFunctionNamePrefix2 = "runtime.debugCall"
debugCallFunctionName = "runtime.debugCallV1"
)
var (
errFuncCallUnsupported = errors.New("function calls not supported by this version of Go")
errFuncCallUnsupportedBackend = errors.New("backend does not support function calls")
errFuncCallInProgress = errors.New("cannot call function while another function call is already in progress")
errNotACallExpr = errors.New("not a function call")
errNoGoroutine = errors.New("no goroutine selected")
errGoroutineNotRunning = errors.New("selected goroutine not running")
errNotEnoughStack = errors.New("not enough stack space")
errTooManyArguments = errors.New("too many arguments")
errNotEnoughArguments = errors.New("not enough arguments")
errNoAddrUnsupported = errors.New("arguments to a function call must have an address")
errNotAGoFunction = errors.New("not a Go function")
)
type functionCallState struct {
// inProgress is true if a function call is in progress
inProgress bool
// finished is true if the function call terminated
finished bool
// savedRegs contains the saved registers
savedRegs Registers
// expr contains an expression describing the current function call
expr string
// err contains a saved error
err error
// fn is the function that is being called
fn *Function
// closureAddr is the address of the closure being called
closureAddr uint64
// argmem contains the argument frame of this function call
argmem []byte
// retvars contains the return variables after the function call terminates without panic'ing
retvars []*Variable
// retLoadCfg is the load configuration used to load return values
retLoadCfg *LoadConfig
// panicvar is a variable used to store the value of the panic, if the
// called function panics.
panicvar *Variable
}
// CallFunction starts a debugger injected function call on the current thread of p.
// See runtime.debugCallV1 in $GOROOT/src/runtime/asm_amd64.s for a
// description of the protocol.
func CallFunction(p Process, expr string, retLoadCfg *LoadConfig) error {
bi := p.BinInfo()
if !p.Common().fncallEnabled {
return errFuncCallUnsupportedBackend
}
fncall := &p.Common().fncallState
if fncall.inProgress {
return errFuncCallInProgress
}
*fncall = functionCallState{}
dbgcallfn := bi.LookupFunc[debugCallFunctionName]
if dbgcallfn == nil {
return errFuncCallUnsupported
}
// check that the selected goroutine is running
g := p.SelectedGoroutine()
if g == nil {
return errNoGoroutine
}
if g.Status != Grunning || g.Thread == nil {
return errGoroutineNotRunning
}
// check that there are at least 256 bytes free on the stack
regs, err := g.Thread.Registers(true)
if err != nil {
return err
}
regs = regs.Copy()
if regs.SP()-256 <= g.stacklo {
return errNotEnoughStack
}
_, err = regs.Get(int(x86asm.RAX))
if err != nil {
return errFuncCallUnsupportedBackend
}
fn, closureAddr, argvars, err := funcCallEvalExpr(p, expr)
if err != nil {
return err
}
argmem, err := funcCallArgFrame(fn, argvars, g, bi)
if err != nil {
return err
}
if err := callOP(bi, g.Thread, regs, dbgcallfn.Entry); err != nil {
return err
}
// write the desired argument frame size at SP-(2*pointer_size) (the extra pointer is the saved PC)
if err := writePointer(bi, g.Thread, regs.SP()-3*uint64(bi.Arch.PtrSize()), uint64(len(argmem))); err != nil {
return err
}
fncall.inProgress = true
fncall.savedRegs = regs
fncall.expr = expr
fncall.fn = fn
fncall.closureAddr = closureAddr
fncall.argmem = argmem
fncall.retLoadCfg = retLoadCfg
fncallLog("function call initiated %v frame size %d\n", fn, len(argmem))
return Continue(p)
}
func fncallLog(fmtstr string, args ...interface{}) {
if !logflags.FnCall() {
return
}
logrus.WithFields(logrus.Fields{"layer": "proc", "kind": "fncall"}).Infof(fmtstr, args...)
}
// writePointer writes val as an architecture pointer at addr in mem.
func writePointer(bi *BinaryInfo, mem MemoryReadWriter, addr, val uint64) error {
ptrbuf := make([]byte, bi.Arch.PtrSize())
// TODO: use target architecture endianness instead of LittleEndian
switch len(ptrbuf) {
case 4:
binary.LittleEndian.PutUint32(ptrbuf, uint32(val))
case 8:
binary.LittleEndian.PutUint64(ptrbuf, val)
default:
panic(fmt.Errorf("unsupported pointer size %d", len(ptrbuf)))
}
_, err := mem.WriteMemory(uintptr(addr), ptrbuf)
return err
}
// callOP simulates a call instruction on the given thread:
// * pushes the current value of PC on the stack (adjusting SP)
// * changes the value of PC to callAddr
// Note: regs are NOT updated!
func callOP(bi *BinaryInfo, thread Thread, regs Registers, callAddr uint64) error {
sp := regs.SP()
// push PC on the stack
sp -= uint64(bi.Arch.PtrSize())
if err := thread.SetSP(sp); err != nil {
return err
}
if err := writePointer(bi, thread, sp, regs.PC()); err != nil {
return err
}
return thread.SetPC(callAddr)
}
// funcCallEvalExpr evaluates expr, which must be a function call, returns
// the function being called and its arguments.
func funcCallEvalExpr(p Process, expr string) (fn *Function, closureAddr uint64, argvars []*Variable, err error) {
bi := p.BinInfo()
scope, err := GoroutineScope(p.CurrentThread())
if err != nil {
return nil, 0, nil, err
}
t, err := parser.ParseExpr(expr)
if err != nil {
return nil, 0, nil, err
}
callexpr, iscall := t.(*ast.CallExpr)
if !iscall {
return nil, 0, nil, errNotACallExpr
}
fnvar, err := scope.evalAST(callexpr.Fun)
if err != nil {
return nil, 0, nil, err
}
if fnvar.Kind != reflect.Func {
return nil, 0, nil, fmt.Errorf("expression %q is not a function", exprToString(callexpr.Fun))
}
fnvar.loadValue(LoadConfig{false, 0, 0, 0, 0})
if fnvar.Unreadable != nil {
return nil, 0, nil, fnvar.Unreadable
}
if fnvar.Base == 0 {
return nil, 0, nil, errors.New("nil pointer dereference")
}
fn = bi.PCToFunc(uint64(fnvar.Base))
if fn == nil {
return nil, 0, nil, fmt.Errorf("could not find DIE for function %q", exprToString(callexpr.Fun))
}
if !fn.cu.isgo {
return nil, 0, nil, errNotAGoFunction
}
argvars = make([]*Variable, 0, len(callexpr.Args)+1)
if len(fnvar.Children) > 0 {
// receiver argument
argvars = append(argvars, &fnvar.Children[0])
}
for i := range callexpr.Args {
argvar, err := scope.evalAST(callexpr.Args[i])
if err != nil {
return nil, 0, nil, err
}
argvar.Name = exprToString(callexpr.Args[i])
argvars = append(argvars, argvar)
}
return fn, fnvar.funcvalAddr(), argvars, nil
}
type funcCallArg struct {
name string
typ godwarf.Type
off int64
isret bool
}
// funcCallArgFrame checks type and pointer escaping for the arguments and
// returns the argument frame.
func funcCallArgFrame(fn *Function, actualArgs []*Variable, g *G, bi *BinaryInfo) (argmem []byte, err error) {
argFrameSize, formalArgs, err := funcCallArgs(fn, bi, false)
if err != nil {
return nil, err
}
if len(actualArgs) > len(formalArgs) {
return nil, errTooManyArguments
}
if len(actualArgs) < len(formalArgs) {
return nil, errNotEnoughArguments
}
// constructs arguments frame
argmem = make([]byte, argFrameSize)
argmemWriter := &bufferMemoryReadWriter{argmem}
for i := range formalArgs {
formalArg := &formalArgs[i]
actualArg := actualArgs[i]
//TODO(aarzilli): only apply the escapeCheck to leaking parameters.
if err := escapeCheck(actualArg, formalArg.name, g); err != nil {
return nil, fmt.Errorf("can not pass %s to %s: %v", actualArg.Name, formalArg.name, err)
}
//TODO(aarzilli): autmoatic wrapping in interfaces for cases not handled
// by convertToEface.
formalArgVar := newVariable(formalArg.name, uintptr(formalArg.off+fakeAddress), formalArg.typ, bi, argmemWriter)
if err := formalArgVar.setValue(actualArg, actualArg.Name); err != nil {
return nil, err
}
}
return argmem, nil
}
func funcCallArgs(fn *Function, bi *BinaryInfo, includeRet bool) (argFrameSize int64, formalArgs []funcCallArg, err error) {
const CFA = 0x1000
vrdr := reader.Variables(bi.dwarf, fn.offset, reader.ToRelAddr(fn.Entry, bi.staticBase), int(^uint(0)>>1), false)
// typechecks arguments, calculates argument frame size
for vrdr.Next() {
e := vrdr.Entry()
if e.Tag != dwarf.TagFormalParameter {
continue
}
entry, argname, typ, err := readVarEntry(e, bi)
if err != nil {
return 0, nil, err
}
typ = resolveTypedef(typ)
locprog, _, err := bi.locationExpr(entry, dwarf.AttrLocation, fn.Entry)
if err != nil {
return 0, nil, fmt.Errorf("could not get argument location of %s: %v", argname, err)
}
off, _, err := op.ExecuteStackProgram(op.DwarfRegisters{CFA: CFA, FrameBase: CFA}, locprog)
if err != nil {
return 0, nil, fmt.Errorf("unsupported location expression for argument %s: %v", argname, err)
}
off -= CFA
if e := off + typ.Size(); e > argFrameSize {
argFrameSize = e
}
if isret, _ := entry.Val(dwarf.AttrVarParam).(bool); !isret || includeRet {
formalArgs = append(formalArgs, funcCallArg{name: argname, typ: typ, off: off, isret: isret})
}
}
if err := vrdr.Err(); err != nil {
return 0, nil, fmt.Errorf("DWARF read error: %v", err)
}
sort.Slice(formalArgs, func(i, j int) bool {
return formalArgs[i].off < formalArgs[j].off
})
return argFrameSize, formalArgs, nil
}
func escapeCheck(v *Variable, name string, g *G) error {
switch v.Kind {
case reflect.Ptr:
w := v.maybeDereference()
return escapeCheckPointer(w.Addr, name, g)
case reflect.Chan, reflect.String, reflect.Slice:
return escapeCheckPointer(v.Base, name, g)
case reflect.Map:
sv := v.clone()
sv.RealType = resolveTypedef(&(v.RealType.(*godwarf.MapType).TypedefType))
sv = sv.maybeDereference()
return escapeCheckPointer(sv.Addr, name, g)
case reflect.Struct:
t := v.RealType.(*godwarf.StructType)
for _, field := range t.Field {
fv, _ := v.toField(field)
if err := escapeCheck(fv, fmt.Sprintf("%s.%s", name, field.Name), g); err != nil {
return err
}
}
case reflect.Array:
for i := int64(0); i < v.Len; i++ {
sv, _ := v.sliceAccess(int(i))
if err := escapeCheck(sv, fmt.Sprintf("%s[%d]", name, i), g); err != nil {
return err
}
}
case reflect.Func:
if err := escapeCheckPointer(uintptr(v.funcvalAddr()), name, g); err != nil {
return err
}
}
return nil
}
func escapeCheckPointer(addr uintptr, name string, g *G) error {
if uint64(addr) >= g.stacklo && uint64(addr) < g.stackhi {
return fmt.Errorf("stack object passed to escaping pointer: %s", name)
}
return nil
}
const (
debugCallAXPrecheckFailed = 8
debugCallAXCompleteCall = 0
debugCallAXReadReturn = 1
debugCallAXReadPanic = 2
debugCallAXRestoreRegisters = 16
)
func (fncall *functionCallState) step(p Process) {
bi := p.BinInfo()
thread := p.CurrentThread()
regs, err := thread.Registers(false)
if err != nil {
fncall.err = err
fncall.finished = true
fncall.inProgress = false
return
}
regs = regs.Copy()
rax, _ := regs.Get(int(x86asm.RAX))
if logflags.FnCall() {
loc, _ := thread.Location()
var pc uint64
var fnname string
if loc != nil {
pc = loc.PC
if loc.Fn != nil {
fnname = loc.Fn.Name
}
}
fncallLog("function call interrupt rax=%#x (PC=%#x in %s)\n", rax, pc, fnname)
}
switch rax {
case debugCallAXPrecheckFailed:
// get error from top of the stack and return it to user
errvar, err := readTopstackVariable(thread, regs, "string", loadFullValue)
if err != nil {
fncall.err = fmt.Errorf("could not get precheck error reason: %v", err)
break
}
errvar.Name = "err"
fncall.err = fmt.Errorf("%v", constant.StringVal(errvar.Value))
case debugCallAXCompleteCall:
// write arguments to the stack, call final function
n, err := thread.WriteMemory(uintptr(regs.SP()), fncall.argmem)
if err != nil {
fncall.err = fmt.Errorf("could not write arguments: %v", err)
}
if n != len(fncall.argmem) {
fncall.err = fmt.Errorf("short argument write: %d %d", n, len(fncall.argmem))
}
if fncall.closureAddr != 0 {
// When calling a function pointer we must set the DX register to the
// address of the function pointer itself.
thread.SetDX(fncall.closureAddr)
}
callOP(bi, thread, regs, fncall.fn.Entry)
case debugCallAXRestoreRegisters:
// runtime requests that we restore the registers (all except pc and sp),
// this is also the last step of the function call protocol.
fncall.finished = true
pc, sp := regs.PC(), regs.SP()
if err := thread.RestoreRegisters(fncall.savedRegs); err != nil {
fncall.err = fmt.Errorf("could not restore registers: %v", err)
}
if err := thread.SetPC(pc); err != nil {
fncall.err = fmt.Errorf("could not restore PC: %v", err)
}
if err := thread.SetSP(sp); err != nil {
fncall.err = fmt.Errorf("could not restore SP: %v", err)
}
if err := stepInstructionOut(p, thread, debugCallFunctionName, debugCallFunctionName); err != nil {
fncall.err = fmt.Errorf("could not step out of %s: %v", debugCallFunctionName, err)
}
case debugCallAXReadReturn:
// read return arguments from stack
if fncall.retLoadCfg == nil || fncall.panicvar != nil {
break
}
scope, err := ThreadScope(thread)
if err != nil {
fncall.err = fmt.Errorf("could not get return values: %v", err)
break
}
// pretend we are still inside the function we called
fakeFunctionEntryScope(scope, fncall.fn, int64(regs.SP()), regs.SP()-uint64(bi.Arch.PtrSize()))
fncall.retvars, err = scope.Locals()
if err != nil {
fncall.err = fmt.Errorf("could not get return values: %v", err)
break
}
fncall.retvars = filterVariables(fncall.retvars, func(v *Variable) bool {
return (v.Flags & VariableReturnArgument) != 0
})
loadValues(fncall.retvars, *fncall.retLoadCfg)
case debugCallAXReadPanic:
// read panic value from stack
if fncall.retLoadCfg == nil {
return
}
fncall.panicvar, err = readTopstackVariable(thread, regs, "interface {}", *fncall.retLoadCfg)
if err != nil {
fncall.err = fmt.Errorf("could not get panic: %v", err)
break
}
fncall.panicvar.Name = "~panic"
fncall.panicvar.loadValue(*fncall.retLoadCfg)
if fncall.panicvar.Unreadable != nil {
fncall.err = fmt.Errorf("could not get panic: %v", fncall.panicvar.Unreadable)
break
}
default:
// Got an unknown AX value, this is probably bad but the safest thing
// possible is to ignore it and hope it didn't matter.
fncallLog("unknown value of AX %#x", rax)
}
}
func readTopstackVariable(thread Thread, regs Registers, typename string, loadCfg LoadConfig) (*Variable, error) {
bi := thread.BinInfo()
scope, err := ThreadScope(thread)
if err != nil {
return nil, err
}
typ, err := bi.findType(typename)
if err != nil {
return nil, err
}
v := scope.newVariable("", uintptr(regs.SP()), typ, scope.Mem)
v.loadValue(loadCfg)
if v.Unreadable != nil {
return nil, v.Unreadable
}
return v, nil
}
// fakeEntryScope alters scope to pretend that we are at the entry point of
// fn and CFA and SP are the ones passed as argument.
// This function is used to create a scope for a call frame that doesn't
// exist anymore, to read the return variables of an injected function call,
// or after a stepout command.
func fakeFunctionEntryScope(scope *EvalScope, fn *Function, cfa int64, sp uint64) error {
scope.PC = fn.Entry
scope.Fn = fn
scope.File, scope.Line, _ = scope.BinInfo.PCToLine(fn.Entry)
scope.Regs.CFA = cfa
scope.Regs.Regs[scope.Regs.SPRegNum].Uint64Val = sp
scope.BinInfo.dwarfReader.Seek(fn.offset)
e, err := scope.BinInfo.dwarfReader.Next()
if err != nil {
return err
}
scope.Regs.FrameBase, _, _, _ = scope.BinInfo.Location(e, dwarf.AttrFrameBase, scope.PC, scope.Regs)
return nil
}
func (fncall *functionCallState) returnValues() []*Variable {
if fncall.panicvar != nil {
return []*Variable{fncall.panicvar}
}
return fncall.retvars
}