bee/vendor/github.com/derekparker/delve/pkg/proc/gdbserial/gdbserver_conn.go

1234 lines
30 KiB
Go

package gdbserial
import (
"bufio"
"bytes"
"debug/macho"
"encoding/json"
"encoding/xml"
"errors"
"fmt"
"io"
"net"
"os"
"strconv"
"strings"
"sync"
"time"
"github.com/derekparker/delve/pkg/logflags"
"github.com/derekparker/delve/pkg/proc"
"github.com/sirupsen/logrus"
)
type gdbConn struct {
conn net.Conn
rdr *bufio.Reader
inbuf []byte
outbuf bytes.Buffer
manualStopMutex sync.Mutex
running bool
resumeChan chan<- struct{}
direction proc.Direction // direction of execution
packetSize int // maximum packet size supported by stub
regsInfo []gdbRegisterInfo // list of registers
pid int // cache process id
ack bool // when ack is true acknowledgment packets are enabled
multiprocess bool // multiprocess extensions are active
maxTransmitAttempts int // maximum number of transmit or receive attempts when bad checksums are read
threadSuffixSupported bool // thread suffix supported by stub
isDebugserver bool // true if the stub is debugserver
log *logrus.Entry
}
const (
regnamePC = "rip"
regnameCX = "rcx"
regnameSP = "rsp"
regnameDX = "rdx"
regnameBP = "rbp"
regnameFsBase = "fs_base"
regnameGsBase = "gs_base"
)
var ErrTooManyAttempts = errors.New("too many transmit attempts")
// GdbProtocolError is an error response (Exx) of Gdb Remote Serial Protocol
// or an "unsupported command" response (empty packet).
type GdbProtocolError struct {
context string
cmd string
code string
}
func (err *GdbProtocolError) Error() string {
cmd := err.cmd
if len(cmd) > 20 {
cmd = cmd[:20] + "..."
}
if err.code == "" {
return fmt.Sprintf("unsupported packet %s during %s", cmd, err.context)
}
return fmt.Sprintf("protocol error %s during %s for packet %s", err.code, err.context, cmd)
}
func isProtocolErrorUnsupported(err error) bool {
gdberr, ok := err.(*GdbProtocolError)
if !ok {
return false
}
return gdberr.code == ""
}
// GdbMalformedThreadIDError is returned when a the stub responds with a
// thread ID that does not conform with the Gdb Remote Serial Protocol
// specification.
type GdbMalformedThreadIDError struct {
tid string
}
func (err *GdbMalformedThreadIDError) Error() string {
return fmt.Sprintf("malformed thread ID %q", err.tid)
}
const (
qSupportedSimple = "$qSupported:swbreak+;hwbreak+;no-resumed+;xmlRegisters=i386"
qSupportedMultiprocess = "$qSupported:multiprocess+;swbreak+;hwbreak+;no-resumed+;xmlRegisters=i386"
)
func (conn *gdbConn) handshake() error {
conn.ack = true
conn.packetSize = 256
conn.rdr = bufio.NewReader(conn.conn)
// This first ack packet is needed to start up the connection
conn.sendack('+')
conn.disableAck()
// Try to enable thread suffixes for the command 'g' and 'p'
if _, err := conn.exec([]byte("$QThreadSuffixSupported"), "init"); err != nil {
if isProtocolErrorUnsupported(err) {
conn.threadSuffixSupported = false
} else {
return err
}
} else {
conn.threadSuffixSupported = true
}
if !conn.threadSuffixSupported {
features, err := conn.qSupported(true)
if err != nil {
return err
}
conn.multiprocess = features["multiprocess"]
// for some reason gdbserver won't let us read target.xml unless first we
// select a thread.
if conn.multiprocess {
conn.exec([]byte("$Hgp0.0"), "init")
} else {
conn.exec([]byte("$Hgp0"), "init")
}
} else {
// execute qSupported with the multiprocess feature disabled (the
// interaction of thread suffixes and multiprocess is not documented), we
// only need this call to configure conn.packetSize.
if _, err := conn.qSupported(false); err != nil {
return err
}
}
// Attempt to figure out the name of the processor register.
// We either need qXfer:features:read (gdbserver/rr) or qRegisterInfo (lldb)
if err := conn.readRegisterInfo(); err != nil {
if isProtocolErrorUnsupported(err) {
if err := conn.readTargetXml(); err != nil {
return err
}
} else {
return err
}
}
// We either need:
// * QListThreadsInStopReply + qThreadStopInfo (i.e. lldb-server/debugserver),
// * or a stub that runs the inferior in single threaded mode (i.e. rr).
// Otherwise we'll have problems handling breakpoints in multithreaded programs.
if _, err := conn.exec([]byte("$QListThreadsInStopReply"), "init"); err != nil {
gdberr, ok := err.(*GdbProtocolError)
if !ok {
return err
}
if gdberr.code != "" {
return err
}
}
return nil
}
// qSupported interprets qSupported responses.
func (conn *gdbConn) qSupported(multiprocess bool) (features map[string]bool, err error) {
q := qSupportedSimple
if multiprocess {
q = qSupportedMultiprocess
}
respBuf, err := conn.exec([]byte(q), "init/qSupported")
if err != nil {
return nil, err
}
resp := strings.Split(string(respBuf), ";")
features = make(map[string]bool)
for _, stubfeature := range resp {
if len(stubfeature) <= 0 {
continue
} else if equal := strings.Index(stubfeature, "="); equal >= 0 {
if stubfeature[:equal] == "PacketSize" {
if n, err := strconv.ParseInt(stubfeature[equal+1:], 16, 64); err == nil {
conn.packetSize = int(n)
}
}
} else if stubfeature[len(stubfeature)-1] == '+' {
features[stubfeature[:len(stubfeature)-1]] = true
}
}
return features, nil
}
// disableAck disables protocol acks.
func (conn *gdbConn) disableAck() error {
_, err := conn.exec([]byte("$QStartNoAckMode"), "init/disableAck")
if err == nil {
conn.ack = false
}
return err
}
// gdbTarget is a struct type used to parse target.xml
type gdbTarget struct {
Includes []gdbTargetInclude `xml:"xi include"`
Registers []gdbRegisterInfo `xml:"reg"`
}
type gdbTargetInclude struct {
Href string `xml:"href,attr"`
}
type gdbRegisterInfo struct {
Name string `xml:"name,attr"`
Bitsize int `xml:"bitsize,attr"`
Offset int
Regnum int `xml:"regnum,attr"`
}
// readTargetXml reads target.xml file from stub using qXfer:features:read,
// then parses it requesting any additional files.
// The schema of target.xml is described by:
// https://github.com/bminor/binutils-gdb/blob/61baf725eca99af2569262d10aca03dcde2698f6/gdb/features/gdb-target.dtd
func (conn *gdbConn) readTargetXml() (err error) {
conn.regsInfo, err = conn.readAnnex("target.xml")
if err != nil {
return err
}
var offset int
var pcFound, cxFound, spFound bool
regnum := 0
for i := range conn.regsInfo {
if conn.regsInfo[i].Regnum == 0 {
conn.regsInfo[i].Regnum = regnum
} else {
regnum = conn.regsInfo[i].Regnum
}
conn.regsInfo[i].Offset = offset
offset += conn.regsInfo[i].Bitsize / 8
switch conn.regsInfo[i].Name {
case regnamePC:
pcFound = true
case regnameCX:
cxFound = true
case regnameSP:
spFound = true
}
regnum++
}
if !pcFound {
return errors.New("could not find RIP register")
}
if !spFound {
return errors.New("could not find RSP register")
}
if !cxFound {
return errors.New("could not find RCX register")
}
return nil
}
// readRegisterInfo uses qRegisterInfo to read register information (used
// when qXfer:feature:read is not supported).
func (conn *gdbConn) readRegisterInfo() (err error) {
regnum := 0
var pcFound, cxFound, spFound bool
for {
conn.outbuf.Reset()
fmt.Fprintf(&conn.outbuf, "$qRegisterInfo%x", regnum)
respbytes, err := conn.exec(conn.outbuf.Bytes(), "register info")
if err != nil {
if regnum == 0 {
return err
}
break
}
var regname string
var offset int
var bitsize int
var contained bool
resp := string(respbytes)
for {
semicolon := strings.Index(resp, ";")
keyval := resp
if semicolon >= 0 {
keyval = resp[:semicolon]
}
colon := strings.Index(keyval, ":")
if colon >= 0 {
name := keyval[:colon]
value := keyval[colon+1:]
switch name {
case "name":
regname = value
case "offset":
offset, _ = strconv.Atoi(value)
case "bitsize":
bitsize, _ = strconv.Atoi(value)
case "container-regs":
contained = true
}
}
if semicolon < 0 {
break
}
resp = resp[semicolon+1:]
}
if contained {
regnum++
continue
}
switch regname {
case regnamePC:
pcFound = true
case regnameCX:
cxFound = true
case regnameSP:
spFound = true
}
conn.regsInfo = append(conn.regsInfo, gdbRegisterInfo{Regnum: regnum, Name: regname, Bitsize: bitsize, Offset: offset})
regnum++
}
if !pcFound {
return errors.New("could not find RIP register")
}
if !spFound {
return errors.New("could not find RSP register")
}
if !cxFound {
return errors.New("could not find RCX register")
}
return nil
}
func (conn *gdbConn) readAnnex(annex string) ([]gdbRegisterInfo, error) {
tgtbuf, err := conn.qXfer("features", annex, false)
if err != nil {
return nil, err
}
var tgt gdbTarget
if err := xml.Unmarshal(tgtbuf, &tgt); err != nil {
return nil, err
}
for _, incl := range tgt.Includes {
regs, err := conn.readAnnex(incl.Href)
if err != nil {
return nil, err
}
tgt.Registers = append(tgt.Registers, regs...)
}
return tgt.Registers, nil
}
func (conn *gdbConn) readExecFile() (string, error) {
outbuf, err := conn.qXfer("exec-file", "", true)
if err != nil {
return "", err
}
return string(outbuf), nil
}
func (conn *gdbConn) readAuxv() ([]byte, error) {
return conn.qXfer("auxv", "", true)
}
// qXfer executes a 'qXfer' read with the specified kind (i.e. feature,
// exec-file, etc...) and annex.
func (conn *gdbConn) qXfer(kind, annex string, binary bool) ([]byte, error) {
out := []byte{}
for {
cmd := []byte(fmt.Sprintf("$qXfer:%s:read:%s:%x,fff", kind, annex, len(out)))
err := conn.send(cmd)
if err != nil {
return nil, err
}
buf, err := conn.recv(cmd, "target features transfer", binary)
if err != nil {
return nil, err
}
out = append(out, buf[1:]...)
if buf[0] == 'l' {
break
}
}
return out, nil
}
// setBreakpoint executes a 'Z' (insert breakpoint) command of type '0' and kind '1'
func (conn *gdbConn) setBreakpoint(addr uint64) error {
conn.outbuf.Reset()
fmt.Fprintf(&conn.outbuf, "$Z0,%x,1", addr)
_, err := conn.exec(conn.outbuf.Bytes(), "set breakpoint")
return err
}
// clearBreakpoint executes a 'z' (remove breakpoint) command of type '0' and kind '1'
func (conn *gdbConn) clearBreakpoint(addr uint64) error {
conn.outbuf.Reset()
fmt.Fprintf(&conn.outbuf, "$z0,%x,1", addr)
_, err := conn.exec(conn.outbuf.Bytes(), "clear breakpoint")
return err
}
// kill executes a 'k' (kill) command.
func (conn *gdbConn) kill() error {
resp, err := conn.exec([]byte{'$', 'k'}, "kill")
if err == io.EOF {
// The stub is allowed to shut the connection on us immediately after a
// kill. This is not an error.
conn.conn.Close()
conn.conn = nil
return proc.ErrProcessExited{Pid: conn.pid}
}
if err != nil {
return err
}
_, _, err = conn.parseStopPacket(resp, "", nil)
return err
}
// detach executes a 'D' (detach) command.
func (conn *gdbConn) detach() error {
if conn.conn == nil {
// Already detached
return nil
}
_, err := conn.exec([]byte{'$', 'D'}, "detach")
conn.conn.Close()
conn.conn = nil
return err
}
// readRegisters executes a 'g' (read registers) command.
func (conn *gdbConn) readRegisters(threadID string, data []byte) error {
if !conn.threadSuffixSupported {
if err := conn.selectThread('g', threadID, "registers read"); err != nil {
return err
}
}
conn.outbuf.Reset()
conn.outbuf.WriteString("$g")
conn.appendThreadSelector(threadID)
resp, err := conn.exec(conn.outbuf.Bytes(), "registers read")
if err != nil {
return err
}
for i := 0; i < len(resp); i += 2 {
n, _ := strconv.ParseUint(string(resp[i:i+2]), 16, 8)
data[i/2] = uint8(n)
}
return nil
}
// writeRegisters executes a 'G' (write registers) command.
func (conn *gdbConn) writeRegisters(threadID string, data []byte) error {
if !conn.threadSuffixSupported {
if err := conn.selectThread('g', threadID, "registers write"); err != nil {
return err
}
}
conn.outbuf.Reset()
conn.outbuf.WriteString("$G")
for _, b := range data {
fmt.Fprintf(&conn.outbuf, "%02x", b)
}
conn.appendThreadSelector(threadID)
_, err := conn.exec(conn.outbuf.Bytes(), "registers write")
return err
}
// readRegister executes 'p' (read register) command.
func (conn *gdbConn) readRegister(threadID string, regnum int, data []byte) error {
if !conn.threadSuffixSupported {
if err := conn.selectThread('g', threadID, "registers write"); err != nil {
return err
}
}
conn.outbuf.Reset()
fmt.Fprintf(&conn.outbuf, "$p%x", regnum)
conn.appendThreadSelector(threadID)
resp, err := conn.exec(conn.outbuf.Bytes(), "register read")
if err != nil {
return err
}
for i := 0; i < len(resp); i += 2 {
n, _ := strconv.ParseUint(string(resp[i:i+2]), 16, 8)
data[i/2] = uint8(n)
}
return nil
}
// writeRegister executes 'P' (write register) command.
func (conn *gdbConn) writeRegister(threadID string, regnum int, data []byte) error {
if !conn.threadSuffixSupported {
if err := conn.selectThread('g', threadID, "registers write"); err != nil {
return err
}
}
conn.outbuf.Reset()
fmt.Fprintf(&conn.outbuf, "$P%x=", regnum)
for _, b := range data {
fmt.Fprintf(&conn.outbuf, "%02x", b)
}
conn.appendThreadSelector(threadID)
_, err := conn.exec(conn.outbuf.Bytes(), "register write")
return err
}
// resume executes a 'vCont' command on all threads with action 'c' if sig
// is 0 or 'C' if it isn't.
func (conn *gdbConn) resume(sig uint8, tu *threadUpdater) (string, uint8, error) {
if conn.direction == proc.Forward {
conn.outbuf.Reset()
if sig == 0 {
fmt.Fprint(&conn.outbuf, "$vCont;c")
} else {
fmt.Fprintf(&conn.outbuf, "$vCont;C%02x", sig)
}
} else {
if err := conn.selectThread('c', "p-1.-1", "resume"); err != nil {
return "", 0, err
}
conn.outbuf.Reset()
fmt.Fprint(&conn.outbuf, "$bc")
}
conn.manualStopMutex.Lock()
if err := conn.send(conn.outbuf.Bytes()); err != nil {
conn.manualStopMutex.Unlock()
return "", 0, err
}
conn.running = true
conn.manualStopMutex.Unlock()
defer func() {
conn.manualStopMutex.Lock()
conn.running = false
conn.manualStopMutex.Unlock()
}()
if conn.resumeChan != nil {
close(conn.resumeChan)
conn.resumeChan = nil
}
return conn.waitForvContStop("resume", "-1", tu)
}
// step executes a 'vCont' command on the specified thread with 's' action.
func (conn *gdbConn) step(threadID string, tu *threadUpdater) (string, uint8, error) {
if conn.direction == proc.Forward {
conn.outbuf.Reset()
fmt.Fprintf(&conn.outbuf, "$vCont;s:%s", threadID)
} else {
if err := conn.selectThread('c', threadID, "step"); err != nil {
return "", 0, err
}
conn.outbuf.Reset()
fmt.Fprint(&conn.outbuf, "$bs")
}
if err := conn.send(conn.outbuf.Bytes()); err != nil {
return "", 0, err
}
return conn.waitForvContStop("singlestep", threadID, tu)
}
var threadBlockedError = errors.New("thread blocked")
func (conn *gdbConn) waitForvContStop(context string, threadID string, tu *threadUpdater) (string, uint8, error) {
count := 0
failed := false
for {
conn.conn.SetReadDeadline(time.Now().Add(heartbeatInterval))
resp, err := conn.recv(nil, context, false)
conn.conn.SetReadDeadline(time.Time{})
if neterr, isneterr := err.(net.Error); isneterr && neterr.Timeout() {
// Debugserver sometimes forgets to inform us that inferior stopped,
// sending this status request after a timeout helps us get unstuck.
// Debugserver will not respond to this request unless inferior is
// already stopped.
if conn.isDebugserver {
conn.send([]byte("$?"))
}
if count > 1 && context == "singlestep" {
failed = true
conn.sendCtrlC()
}
count++
} else if failed {
return "", 0, threadBlockedError
} else if err != nil {
return "", 0, err
} else {
repeat, sp, err := conn.parseStopPacket(resp, threadID, tu)
if !repeat {
return sp.threadID, sp.sig, err
}
}
}
}
type stopPacket struct {
threadID string
sig uint8
reason string
}
// executes 'vCont' (continue/step) command
func (conn *gdbConn) parseStopPacket(resp []byte, threadID string, tu *threadUpdater) (repeat bool, sp stopPacket, err error) {
switch resp[0] {
case 'T':
if len(resp) < 3 {
return false, stopPacket{}, fmt.Errorf("malformed response for vCont %s", string(resp))
}
sig, err := strconv.ParseUint(string(resp[1:3]), 16, 8)
if err != nil {
return false, stopPacket{}, fmt.Errorf("malformed stop packet: %s", string(resp))
}
sp.sig = uint8(sig)
if logflags.GdbWire() && gdbWireFullStopPacket {
conn.log.Debugf("full stop packet: %s", string(resp))
}
buf := resp[3:]
for buf != nil {
colon := bytes.Index(buf, []byte{':'})
if colon < 0 {
break
}
key := buf[:colon]
buf = buf[colon+1:]
semicolon := bytes.Index(buf, []byte{';'})
var value []byte
if semicolon < 0 {
value = buf
buf = nil
} else {
value = buf[:semicolon]
buf = buf[semicolon+1:]
}
switch string(key) {
case "thread":
sp.threadID = string(value)
case "threads":
if tu != nil {
tu.Add(strings.Split(string(value), ","))
tu.Finish()
}
case "reason":
sp.reason = string(value)
}
}
return false, sp, nil
case 'W', 'X':
// process exited, next two character are exit code
semicolon := bytes.Index(resp, []byte{';'})
if semicolon < 0 {
semicolon = len(resp)
}
status, _ := strconv.ParseUint(string(resp[1:semicolon]), 16, 8)
return false, stopPacket{}, proc.ErrProcessExited{Pid: conn.pid, Status: int(status)}
case 'N':
// we were singlestepping the thread and the thread exited
sp.threadID = threadID
return false, sp, nil
case 'O':
data := make([]byte, 0, len(resp[1:])/2)
for i := 1; i < len(resp); i += 2 {
n, _ := strconv.ParseUint(string(resp[i:i+2]), 16, 8)
data = append(data, uint8(n))
}
os.Stdout.Write(data)
return true, sp, nil
default:
return false, sp, fmt.Errorf("unexpected response for vCont %c", resp[0])
}
}
const ctrlC = 0x03 // the ASCII character for ^C
// executes a ctrl-C on the line
func (conn *gdbConn) sendCtrlC() error {
conn.log.Debug("<- interrupt")
_, err := conn.conn.Write([]byte{ctrlC})
return err
}
// queryProcessInfo executes a qProcessInfoPID (if pid != 0) or a qProcessInfo (if pid == 0)
func (conn *gdbConn) queryProcessInfo(pid int) (map[string]string, error) {
conn.outbuf.Reset()
if pid != 0 {
fmt.Fprintf(&conn.outbuf, "$qProcessInfoPID:%d", pid)
} else {
fmt.Fprint(&conn.outbuf, "$qProcessInfo")
}
resp, err := conn.exec(conn.outbuf.Bytes(), "process info for pid")
if err != nil {
return nil, err
}
pi := make(map[string]string)
for len(resp) > 0 {
semicolon := bytes.Index(resp, []byte{';'})
keyval := resp
if semicolon >= 0 {
keyval = resp[:semicolon]
resp = resp[semicolon+1:]
}
colon := bytes.Index(keyval, []byte{':'})
if colon < 0 {
continue
}
key := string(keyval[:colon])
value := string(keyval[colon+1:])
switch key {
case "name":
name := make([]byte, len(value)/2)
for i := 0; i < len(value); i += 2 {
n, _ := strconv.ParseUint(string(value[i:i+2]), 16, 8)
name[i/2] = byte(n)
}
pi[key] = string(name)
default:
pi[key] = value
}
}
return pi, nil
}
// executes qfThreadInfo/qsThreadInfo commands
func (conn *gdbConn) queryThreads(first bool) (threads []string, err error) {
// https://sourceware.org/gdb/onlinedocs/gdb/General-Query-Packets.html
conn.outbuf.Reset()
if first {
conn.outbuf.WriteString("$qfThreadInfo")
} else {
conn.outbuf.WriteString("$qsThreadInfo")
}
resp, err := conn.exec(conn.outbuf.Bytes(), "thread info")
if err != nil {
return nil, err
}
switch resp[0] {
case 'l':
return nil, nil
case 'm':
// parse list...
default:
return nil, errors.New("malformed qfThreadInfo response")
}
var pid int
resp = resp[1:]
for {
tidbuf := resp
comma := bytes.Index(tidbuf, []byte{','})
if comma >= 0 {
tidbuf = tidbuf[:comma]
}
if conn.multiprocess && pid == 0 {
dot := bytes.Index(tidbuf, []byte{'.'})
if dot >= 0 {
pid, _ = strconv.Atoi(string(tidbuf[1:dot]))
}
}
threads = append(threads, string(tidbuf))
if comma < 0 {
break
}
resp = resp[comma+1:]
}
if conn.multiprocess && pid > 0 {
conn.pid = pid
}
return threads, nil
}
func (conn *gdbConn) selectThread(kind byte, threadID string, context string) error {
if conn.threadSuffixSupported {
panic("selectThread when thread suffix is supported")
}
conn.outbuf.Reset()
fmt.Fprintf(&conn.outbuf, "$H%c%s", kind, threadID)
_, err := conn.exec(conn.outbuf.Bytes(), context)
return err
}
func (conn *gdbConn) appendThreadSelector(threadID string) {
if !conn.threadSuffixSupported {
return
}
fmt.Fprintf(&conn.outbuf, ";thread:%s;", threadID)
}
// executes 'm' (read memory) command
func (conn *gdbConn) readMemory(data []byte, addr uintptr) error {
size := len(data)
data = data[:0]
for size > 0 {
conn.outbuf.Reset()
// gdbserver will crash if we ask too many bytes... not return an error, actually crash
sz := size
if dataSize := (conn.packetSize - 4) / 2; sz > dataSize {
sz = dataSize
}
size = size - sz
fmt.Fprintf(&conn.outbuf, "$m%x,%x", addr+uintptr(len(data)), sz)
resp, err := conn.exec(conn.outbuf.Bytes(), "memory read")
if err != nil {
return err
}
for i := 0; i < len(resp); i += 2 {
n, _ := strconv.ParseUint(string(resp[i:i+2]), 16, 8)
data = append(data, uint8(n))
}
}
return nil
}
func writeAsciiBytes(w io.Writer, data []byte) {
for _, b := range data {
fmt.Fprintf(w, "%02x", b)
}
}
// executes 'M' (write memory) command
func (conn *gdbConn) writeMemory(addr uintptr, data []byte) (written int, err error) {
if len(data) == 0 {
// LLDB can't parse requests for 0-length writes and hangs if we emit them
return 0, nil
}
conn.outbuf.Reset()
//TODO(aarzilli): do not send packets larger than conn.PacketSize
fmt.Fprintf(&conn.outbuf, "$M%x,%x:", addr, len(data))
writeAsciiBytes(&conn.outbuf, data)
_, err = conn.exec(conn.outbuf.Bytes(), "memory write")
if err != nil {
return 0, err
}
return len(data), nil
}
func (conn *gdbConn) allocMemory(sz uint64) (uint64, error) {
conn.outbuf.Reset()
fmt.Fprintf(&conn.outbuf, "$_M%x,rwx", sz)
resp, err := conn.exec(conn.outbuf.Bytes(), "memory allocation")
if err != nil {
return 0, err
}
return strconv.ParseUint(string(resp), 16, 64)
}
// threadStopInfo executes a 'qThreadStopInfo' and returns the reason the
// thread stopped.
func (conn *gdbConn) threadStopInfo(threadID string) (sig uint8, reason string, err error) {
conn.outbuf.Reset()
fmt.Fprintf(&conn.outbuf, "$qThreadStopInfo%s", threadID)
resp, err := conn.exec(conn.outbuf.Bytes(), "thread stop info")
if err != nil {
return 0, "", err
}
_, sp, err := conn.parseStopPacket(resp, "", nil)
if err != nil {
return 0, "", err
}
return sp.sig, sp.reason, nil
}
// restart executes a 'vRun' command.
func (conn *gdbConn) restart(pos string) error {
conn.outbuf.Reset()
fmt.Fprint(&conn.outbuf, "$vRun;")
if pos != "" {
fmt.Fprint(&conn.outbuf, ";")
writeAsciiBytes(&conn.outbuf, []byte(pos))
}
_, err := conn.exec(conn.outbuf.Bytes(), "restart")
return err
}
// qRRCmd executes a qRRCmd command
func (conn *gdbConn) qRRCmd(args ...string) (string, error) {
if len(args) == 0 {
panic("must specify at least one argument for qRRCmd")
}
conn.outbuf.Reset()
fmt.Fprint(&conn.outbuf, "$qRRCmd")
for _, arg := range args {
fmt.Fprint(&conn.outbuf, ":")
writeAsciiBytes(&conn.outbuf, []byte(arg))
}
resp, err := conn.exec(conn.outbuf.Bytes(), "qRRCmd")
if err != nil {
return "", err
}
data := make([]byte, 0, len(resp)/2)
for i := 0; i < len(resp); i += 2 {
n, _ := strconv.ParseUint(string(resp[i:i+2]), 16, 8)
data = append(data, uint8(n))
}
return string(data), nil
}
type imageList struct {
Images []imageDescription `json:"images"`
}
type imageDescription struct {
Pathname string `json:"pathname"`
MachHeader machHeader `json:"mach_header"`
}
type machHeader struct {
FileType macho.Type `json:"filetype"`
}
// getLoadedDynamicLibraries executes jGetLoadedDynamicLibrariesInfos which
// returns the list of loaded dynamic libraries
func (conn *gdbConn) getLoadedDynamicLibraries() ([]imageDescription, error) {
cmd := []byte("$jGetLoadedDynamicLibrariesInfos:{\"fetch_all_solibs\":true}")
if err := conn.send(cmd); err != nil {
return nil, err
}
resp, err := conn.recv(cmd, "get dynamic libraries", true)
if err != nil {
return nil, err
}
var images imageList
err = json.Unmarshal(resp, &images)
return images.Images, err
}
// exec executes a message to the stub and reads a response.
// The details of the wire protocol are described here:
// https://sourceware.org/gdb/onlinedocs/gdb/Overview.html#Overview
func (conn *gdbConn) exec(cmd []byte, context string) ([]byte, error) {
if err := conn.send(cmd); err != nil {
return nil, err
}
return conn.recv(cmd, context, false)
}
var hexdigit = []byte{'0', '1', '2', '3', '4', '5', '6', '7', '8', '9', 'a', 'b', 'c', 'd', 'e', 'f'}
func (conn *gdbConn) send(cmd []byte) error {
if len(cmd) == 0 || cmd[0] != '$' {
panic("gdb protocol error: command doesn't start with '$'")
}
// append checksum to packet
cmd = append(cmd, '#')
sum := checksum(cmd)
cmd = append(cmd, hexdigit[sum>>4])
cmd = append(cmd, hexdigit[sum&0xf])
attempt := 0
for {
if logflags.GdbWire() {
if len(cmd) > gdbWireMaxLen {
conn.log.Debugf("<- %s...", string(cmd[:gdbWireMaxLen]))
} else {
conn.log.Debugf("<- %s", string(cmd))
}
}
_, err := conn.conn.Write(cmd)
if err != nil {
return err
}
if !conn.ack {
break
}
if conn.readack() {
break
}
if attempt > conn.maxTransmitAttempts {
return ErrTooManyAttempts
}
attempt++
}
return nil
}
func (conn *gdbConn) recv(cmd []byte, context string, binary bool) (resp []byte, err error) {
attempt := 0
for {
var err error
resp, err = conn.rdr.ReadBytes('#')
if err != nil {
return nil, err
}
// read checksum
_, err = conn.rdr.Read(conn.inbuf[:2])
if err != nil {
return nil, err
}
if logflags.GdbWire() {
out := resp
partial := false
if idx := bytes.Index(out, []byte{'\n'}); idx >= 0 {
out = resp[:idx]
partial = true
}
if len(out) > gdbWireMaxLen {
out = out[:gdbWireMaxLen]
partial = true
}
if !partial {
conn.log.Debugf("-> %s%s", string(resp), string(conn.inbuf[:2]))
} else {
conn.log.Debugf("-> %s...", string(out))
}
}
if !conn.ack {
break
}
if resp[0] == '%' {
// If the first character is a % (instead of $) the stub sent us a
// notification packet, this is weird since we specifically claimed that
// we don't support notifications of any kind, but it should be safe to
// ignore regardless.
continue
}
if checksumok(resp, conn.inbuf[:2]) {
conn.sendack('+')
break
}
if attempt > conn.maxTransmitAttempts {
conn.sendack('+')
return nil, ErrTooManyAttempts
}
attempt++
conn.sendack('-')
}
if binary {
conn.inbuf, resp = binarywiredecode(resp, conn.inbuf)
} else {
conn.inbuf, resp = wiredecode(resp, conn.inbuf)
}
if len(resp) == 0 || resp[0] == 'E' {
cmdstr := ""
if cmd != nil {
cmdstr = string(cmd)
}
return nil, &GdbProtocolError{context, cmdstr, string(resp)}
}
return resp, nil
}
// Readack reads one byte from stub, returns true if the byte is '+'
func (conn *gdbConn) readack() bool {
b, err := conn.rdr.ReadByte()
if err != nil {
return false
}
conn.log.Debugf("-> %s", string(b))
return b == '+'
}
// Sendack executes an ack character, c must be either '+' or '-'
func (conn *gdbConn) sendack(c byte) {
if c != '+' && c != '-' {
panic(fmt.Errorf("sendack(%c)", c))
}
conn.conn.Write([]byte{c})
conn.log.Debugf("<- %s", string(c))
}
// escapeXor is the value mandated by the specification to escape characters
const escapeXor byte = 0x20
// wiredecode decodes the contents of in into buf.
// If buf is nil it will be allocated ex-novo, if the size of buf is not
// enough to hold the decoded contents it will be grown.
// Returns the newly allocated buffer as newbuf and the message contents as
// msg.
func wiredecode(in, buf []byte) (newbuf, msg []byte) {
if buf != nil {
buf = buf[:0]
} else {
buf = make([]byte, 0, 256)
}
start := 1
for i := 0; i < len(in); i++ {
switch ch := in[i]; ch {
case '{': // escape
if i+1 >= len(in) {
buf = append(buf, ch)
} else {
buf = append(buf, in[i+1]^escapeXor)
i++
}
case ':':
buf = append(buf, ch)
if i == 3 {
// we just read the sequence identifier
start = i + 1
}
case '#': // end of packet
return buf, buf[start:]
case '*': // runlength encoding marker
if i+1 >= len(in) || i == 0 {
buf = append(buf, ch)
} else {
n := in[i+1] - 29
r := buf[len(buf)-1]
for j := uint8(0); j < n; j++ {
buf = append(buf, r)
}
i++
}
default:
buf = append(buf, ch)
}
}
return buf, buf[start:]
}
// binarywiredecode is like wiredecode but decodes the wire encoding for
// binary packets, such as the 'x' and 'X' packets as well as all the json
// packets used by lldb/debugserver.
func binarywiredecode(in, buf []byte) (newbuf, msg []byte) {
if buf != nil {
buf = buf[:0]
} else {
buf = make([]byte, 0, 256)
}
start := 1
for i := 0; i < len(in); i++ {
switch ch := in[i]; ch {
case '}': // escape
if i+1 >= len(in) {
buf = append(buf, ch)
} else {
buf = append(buf, in[i+1]^escapeXor)
i++
}
case '#': // end of packet
return buf, buf[start:]
default:
buf = append(buf, ch)
}
}
return buf, buf[start:]
}
// Checksumok checks that checksum is a valid checksum for packet.
func checksumok(packet, checksumBuf []byte) bool {
if packet[0] != '$' {
return false
}
sum := checksum(packet)
tgt, err := strconv.ParseUint(string(checksumBuf), 16, 8)
if err != nil {
return false
}
return sum == uint8(tgt)
}
func checksum(packet []byte) (sum uint8) {
for i := 1; i < len(packet); i++ {
if packet[i] == '#' {
return sum
}
sum += packet[i]
}
return sum
}