bee/vendor/github.com/go-delve/delve/pkg/proc/linutil/regs.go

400 lines
9.7 KiB
Go
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

package linutil
import (
"bytes"
"encoding/binary"
"fmt"
"golang.org/x/arch/x86/x86asm"
"github.com/go-delve/delve/pkg/proc"
)
// AMD64Registers implements the proc.Registers interface for the native/linux
// backend and core/linux backends, on AMD64.
type AMD64Registers struct {
Regs *AMD64PtraceRegs
Fpregs []proc.Register
Fpregset *AMD64Xstate
}
// AMD64PtraceRegs is the struct used by the linux kernel to return the
// general purpose registers for AMD64 CPUs.
type AMD64PtraceRegs struct {
R15 uint64
R14 uint64
R13 uint64
R12 uint64
Rbp uint64
Rbx uint64
R11 uint64
R10 uint64
R9 uint64
R8 uint64
Rax uint64
Rcx uint64
Rdx uint64
Rsi uint64
Rdi uint64
Orig_rax uint64
Rip uint64
Cs uint64
Eflags uint64
Rsp uint64
Ss uint64
Fs_base uint64
Gs_base uint64
Ds uint64
Es uint64
Fs uint64
Gs uint64
}
// Slice returns the registers as a list of (name, value) pairs.
func (r *AMD64Registers) Slice(floatingPoint bool) []proc.Register {
var regs = []struct {
k string
v uint64
}{
{"Rip", r.Regs.Rip},
{"Rsp", r.Regs.Rsp},
{"Rax", r.Regs.Rax},
{"Rbx", r.Regs.Rbx},
{"Rcx", r.Regs.Rcx},
{"Rdx", r.Regs.Rdx},
{"Rdi", r.Regs.Rdi},
{"Rsi", r.Regs.Rsi},
{"Rbp", r.Regs.Rbp},
{"R8", r.Regs.R8},
{"R9", r.Regs.R9},
{"R10", r.Regs.R10},
{"R11", r.Regs.R11},
{"R12", r.Regs.R12},
{"R13", r.Regs.R13},
{"R14", r.Regs.R14},
{"R15", r.Regs.R15},
{"Orig_rax", r.Regs.Orig_rax},
{"Cs", r.Regs.Cs},
{"Eflags", r.Regs.Eflags},
{"Ss", r.Regs.Ss},
{"Fs_base", r.Regs.Fs_base},
{"Gs_base", r.Regs.Gs_base},
{"Ds", r.Regs.Ds},
{"Es", r.Regs.Es},
{"Fs", r.Regs.Fs},
{"Gs", r.Regs.Gs},
}
out := make([]proc.Register, 0, len(regs)+len(r.Fpregs))
for _, reg := range regs {
if reg.k == "Eflags" {
out = proc.AppendEflagReg(out, reg.k, reg.v)
} else {
out = proc.AppendQwordReg(out, reg.k, reg.v)
}
}
if floatingPoint {
out = append(out, r.Fpregs...)
}
return out
}
// PC returns the value of RIP register.
func (r *AMD64Registers) PC() uint64 {
return r.Regs.Rip
}
// SP returns the value of RSP register.
func (r *AMD64Registers) SP() uint64 {
return r.Regs.Rsp
}
func (r *AMD64Registers) BP() uint64 {
return r.Regs.Rbp
}
// CX returns the value of RCX register.
func (r *AMD64Registers) CX() uint64 {
return r.Regs.Rcx
}
// TLS returns the address of the thread local storage memory segment.
func (r *AMD64Registers) TLS() uint64 {
return r.Regs.Fs_base
}
// GAddr returns the address of the G variable if it is known, 0 and false
// otherwise.
func (r *AMD64Registers) GAddr() (uint64, bool) {
return 0, false
}
// Get returns the value of the n-th register (in x86asm order).
func (r *AMD64Registers) Get(n int) (uint64, error) {
reg := x86asm.Reg(n)
const (
mask8 = 0x000f
mask16 = 0x00ff
mask32 = 0xffff
)
switch reg {
// 8-bit
case x86asm.AL:
return r.Regs.Rax & mask8, nil
case x86asm.CL:
return r.Regs.Rcx & mask8, nil
case x86asm.DL:
return r.Regs.Rdx & mask8, nil
case x86asm.BL:
return r.Regs.Rbx & mask8, nil
case x86asm.AH:
return (r.Regs.Rax >> 8) & mask8, nil
case x86asm.CH:
return (r.Regs.Rcx >> 8) & mask8, nil
case x86asm.DH:
return (r.Regs.Rdx >> 8) & mask8, nil
case x86asm.BH:
return (r.Regs.Rbx >> 8) & mask8, nil
case x86asm.SPB:
return r.Regs.Rsp & mask8, nil
case x86asm.BPB:
return r.Regs.Rbp & mask8, nil
case x86asm.SIB:
return r.Regs.Rsi & mask8, nil
case x86asm.DIB:
return r.Regs.Rdi & mask8, nil
case x86asm.R8B:
return r.Regs.R8 & mask8, nil
case x86asm.R9B:
return r.Regs.R9 & mask8, nil
case x86asm.R10B:
return r.Regs.R10 & mask8, nil
case x86asm.R11B:
return r.Regs.R11 & mask8, nil
case x86asm.R12B:
return r.Regs.R12 & mask8, nil
case x86asm.R13B:
return r.Regs.R13 & mask8, nil
case x86asm.R14B:
return r.Regs.R14 & mask8, nil
case x86asm.R15B:
return r.Regs.R15 & mask8, nil
// 16-bit
case x86asm.AX:
return r.Regs.Rax & mask16, nil
case x86asm.CX:
return r.Regs.Rcx & mask16, nil
case x86asm.DX:
return r.Regs.Rdx & mask16, nil
case x86asm.BX:
return r.Regs.Rbx & mask16, nil
case x86asm.SP:
return r.Regs.Rsp & mask16, nil
case x86asm.BP:
return r.Regs.Rbp & mask16, nil
case x86asm.SI:
return r.Regs.Rsi & mask16, nil
case x86asm.DI:
return r.Regs.Rdi & mask16, nil
case x86asm.R8W:
return r.Regs.R8 & mask16, nil
case x86asm.R9W:
return r.Regs.R9 & mask16, nil
case x86asm.R10W:
return r.Regs.R10 & mask16, nil
case x86asm.R11W:
return r.Regs.R11 & mask16, nil
case x86asm.R12W:
return r.Regs.R12 & mask16, nil
case x86asm.R13W:
return r.Regs.R13 & mask16, nil
case x86asm.R14W:
return r.Regs.R14 & mask16, nil
case x86asm.R15W:
return r.Regs.R15 & mask16, nil
// 32-bit
case x86asm.EAX:
return r.Regs.Rax & mask32, nil
case x86asm.ECX:
return r.Regs.Rcx & mask32, nil
case x86asm.EDX:
return r.Regs.Rdx & mask32, nil
case x86asm.EBX:
return r.Regs.Rbx & mask32, nil
case x86asm.ESP:
return r.Regs.Rsp & mask32, nil
case x86asm.EBP:
return r.Regs.Rbp & mask32, nil
case x86asm.ESI:
return r.Regs.Rsi & mask32, nil
case x86asm.EDI:
return r.Regs.Rdi & mask32, nil
case x86asm.R8L:
return r.Regs.R8 & mask32, nil
case x86asm.R9L:
return r.Regs.R9 & mask32, nil
case x86asm.R10L:
return r.Regs.R10 & mask32, nil
case x86asm.R11L:
return r.Regs.R11 & mask32, nil
case x86asm.R12L:
return r.Regs.R12 & mask32, nil
case x86asm.R13L:
return r.Regs.R13 & mask32, nil
case x86asm.R14L:
return r.Regs.R14 & mask32, nil
case x86asm.R15L:
return r.Regs.R15 & mask32, nil
// 64-bit
case x86asm.RAX:
return r.Regs.Rax, nil
case x86asm.RCX:
return r.Regs.Rcx, nil
case x86asm.RDX:
return r.Regs.Rdx, nil
case x86asm.RBX:
return r.Regs.Rbx, nil
case x86asm.RSP:
return r.Regs.Rsp, nil
case x86asm.RBP:
return r.Regs.Rbp, nil
case x86asm.RSI:
return r.Regs.Rsi, nil
case x86asm.RDI:
return r.Regs.Rdi, nil
case x86asm.R8:
return r.Regs.R8, nil
case x86asm.R9:
return r.Regs.R9, nil
case x86asm.R10:
return r.Regs.R10, nil
case x86asm.R11:
return r.Regs.R11, nil
case x86asm.R12:
return r.Regs.R12, nil
case x86asm.R13:
return r.Regs.R13, nil
case x86asm.R14:
return r.Regs.R14, nil
case x86asm.R15:
return r.Regs.R15, nil
}
return 0, proc.ErrUnknownRegister
}
// Copy returns a copy of these registers that is guarenteed not to change.
func (r *AMD64Registers) Copy() proc.Registers {
var rr AMD64Registers
rr.Regs = &AMD64PtraceRegs{}
rr.Fpregset = &AMD64Xstate{}
*(rr.Regs) = *(r.Regs)
if r.Fpregset != nil {
*(rr.Fpregset) = *(r.Fpregset)
}
if r.Fpregs != nil {
rr.Fpregs = make([]proc.Register, len(r.Fpregs))
copy(rr.Fpregs, r.Fpregs)
}
return &rr
}
// AMD64PtraceFpRegs tracks user_fpregs_struct in /usr/include/x86_64-linux-gnu/sys/user.h
type AMD64PtraceFpRegs struct {
Cwd uint16
Swd uint16
Ftw uint16
Fop uint16
Rip uint64
Rdp uint64
Mxcsr uint32
MxcrMask uint32
StSpace [32]uint32
XmmSpace [256]byte
Padding [24]uint32
}
// AMD64Xstate represents amd64 XSAVE area. See Section 13.1 (and
// following) of Intel® 64 and IA-32 Architectures Software Developers
// Manual, Volume 1: Basic Architecture.
type AMD64Xstate struct {
AMD64PtraceFpRegs
Xsave []byte // raw xsave area
AvxState bool // contains AVX state
YmmSpace [256]byte
}
// Decode decodes an XSAVE area to a list of name/value pairs of registers.
func (xsave *AMD64Xstate) Decode() (regs []proc.Register) {
// x87 registers
regs = proc.AppendWordReg(regs, "CW", xsave.Cwd)
regs = proc.AppendWordReg(regs, "SW", xsave.Swd)
regs = proc.AppendWordReg(regs, "TW", xsave.Ftw)
regs = proc.AppendWordReg(regs, "FOP", xsave.Fop)
regs = proc.AppendQwordReg(regs, "FIP", xsave.Rip)
regs = proc.AppendQwordReg(regs, "FDP", xsave.Rdp)
for i := 0; i < len(xsave.StSpace); i += 4 {
regs = proc.AppendX87Reg(regs, i/4, uint16(xsave.StSpace[i+2]), uint64(xsave.StSpace[i+1])<<32|uint64(xsave.StSpace[i]))
}
// SSE registers
regs = proc.AppendMxcsrReg(regs, "MXCSR", uint64(xsave.Mxcsr))
regs = proc.AppendDwordReg(regs, "MXCSR_MASK", xsave.MxcrMask)
for i := 0; i < len(xsave.XmmSpace); i += 16 {
regs = proc.AppendSSEReg(regs, fmt.Sprintf("XMM%d", i/16), xsave.XmmSpace[i:i+16])
if xsave.AvxState {
regs = proc.AppendSSEReg(regs, fmt.Sprintf("YMM%d", i/16), xsave.YmmSpace[i:i+16])
}
}
return
}
const (
_XSAVE_HEADER_START = 512
_XSAVE_HEADER_LEN = 64
_XSAVE_EXTENDED_REGION_START = 576
_XSAVE_SSE_REGION_LEN = 416
)
// LinuxX86XstateRead reads a byte array containing an XSAVE area into regset.
// If readLegacy is true regset.PtraceFpRegs will be filled with the
// contents of the legacy region of the XSAVE area.
// See Section 13.1 (and following) of Intel® 64 and IA-32 Architectures
// Software Developers Manual, Volume 1: Basic Architecture.
func AMD64XstateRead(xstateargs []byte, readLegacy bool, regset *AMD64Xstate) error {
if _XSAVE_HEADER_START+_XSAVE_HEADER_LEN >= len(xstateargs) {
return nil
}
if readLegacy {
rdr := bytes.NewReader(xstateargs[:_XSAVE_HEADER_START])
if err := binary.Read(rdr, binary.LittleEndian, &regset.AMD64PtraceFpRegs); err != nil {
return err
}
}
xsaveheader := xstateargs[_XSAVE_HEADER_START : _XSAVE_HEADER_START+_XSAVE_HEADER_LEN]
xstate_bv := binary.LittleEndian.Uint64(xsaveheader[0:8])
xcomp_bv := binary.LittleEndian.Uint64(xsaveheader[8:16])
if xcomp_bv&(1<<63) != 0 {
// compact format not supported
return nil
}
if xstate_bv&(1<<2) == 0 {
// AVX state not present
return nil
}
avxstate := xstateargs[_XSAVE_EXTENDED_REGION_START:]
regset.AvxState = true
copy(regset.YmmSpace[:], avxstate[:len(regset.YmmSpace)])
return nil
}